

VDS Series Small Variable Volume Vane Pump

0.5 in³/rev 3.94 gpm 1015 psi

Features

High efficiency operation with minimal power loss

All the performance of the original new VDR series mechanisms combines with precision machining for a pump that minimizes power loss, especially at full cutoff.

Quiet operation

Journal bearings with a proven record on IP pumps plus new suction and discharge port configurations reduce operating noise and deliver quiet operation with minimal vibration, even in the high-pressure range.

Compact and simple design, easy operation

Compact and quiet, VDS Series variable vane pumps are economical and easy to handle. A simple design allows use in a wide range of hydraulic systems.

Precise characteristics, prompt response

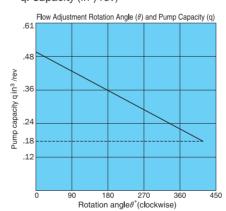
Prompt response at both ON-OFF

and OFF-ON ensures instantaneous, stable, high-precision operation.

Solidly built for high efficiency and long life

VDS Series pumps are built to last, with a design that incorporates years of NACHI experience and know-how. Specially selected materials and skilled workmanship provide outstanding durability along with stable, highefficiency operation.

Specifications


Model No.	Capacity in ³ /rev		No-load Disc	harge Rate om		Pressure Adjustment Range	Allowable Peak Pressure		Revolution Speed min We	
	111 / 164	1000min ⁻¹	1200min ⁻¹	1500min ⁻¹	1800min ⁻¹	psi	psi	Min.	Max.	103
VDS-0A(B)-1A1-E11 " -1A2-E11 " -1A3-E11	.50	2.1	2.6	3.2	3.94	145 ~ 290 317 ~ 507 435 ~ 1015	2030	800	1800	A:14.3 B:9.9

- Handling
- 1 The direction of rotation for this pump is clockwise (rightward) when viewed from the shaft side.
- 2 Drain piping must be direct piping up to a point that is below the tank fluid level, and back pressure due to pipe resistance should not exceed 4.3 psi.
- 3 When adjusting pressure, pressure is increased by clockwise (rightward) rotation of the adjusting screw and decreased by counterclockwise (leftward) rotation.
- 4 When adjusting the flow rate, the flow rate is decreased by clockwise (rightward) rotation of the adjusting screw and increased by counterclockwise (leftward) rotation. The graph on the right provides general guidelines for the relationship between the rotation angle of the flow rate adjusting screw and the noload discharge rate.
- 5 Factory Default P-Q Settings (Standard Model)
 - Flow Rate Setting = Maximum flow rate for model as indicated in the catalog.
 - Pressure Setting = Pressure shown in table below.

Factory Default Pressure Settings kgf/cm² (psi)

1:20.4 (290) 2:35.7 (507) 3:71.4 (1015)

- Flow rate gpm = $\frac{\text{in}^3 \text{ x rpm}}{231}$
- Q: No-load Discharge Rate (gpm)
- q: Capacity (in³/rev)

The values indicated above are at maximum pump discharge volume with the flow volume adjusting screwat the 0° position. The broken line shows the flow volume adjustment range lower limit value.

6 Thrust Screw The thrust screw is precision adjusted at the factory during assembly. Never touch the thrust screw.

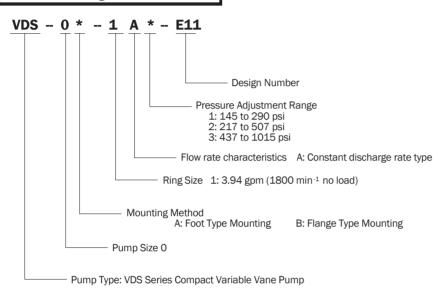
- See callout 9 in the cross-section diagram on page B-4.
- 7 Initial Operation
 Before operating the pump for the first time, put the pump discharge side into the no-load state and then repeatedly start and sto the motor to bleed all air from incide the pump and the gustien.

from inside the pump and the suction piping. After confirming that the pump is discharging oil, continue the no-load operation for at least 10 minutes to discharge all the air from the circuit. 8 For the hydraulic operating fluid, use an

- R&O type and wear-resistant type of ISO VG32 to 68 or equivalent (viscosity index of at least 90). Use hydraulic operating fluid that provides kinematic viscosity during operation in the range of 20 to 150 centistokes.
- 9 The operating temperature range is 59 to 140°F. When the oil temperature at startup is 59°F or less, perform a warm-up operation at low pressure until the oil temperature reaches 59°F. Use the pump in an area where the temperature is within the range of 59 to 140°F.

(continued on following page)

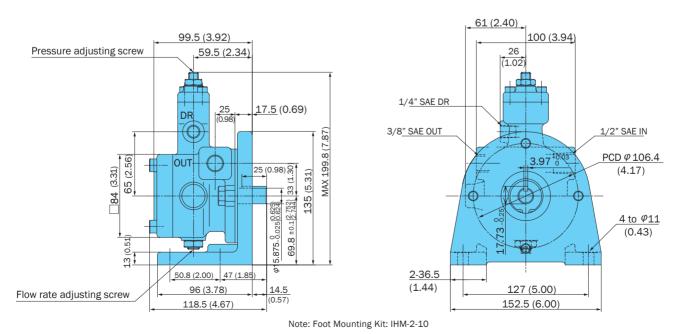
Catalog 1501

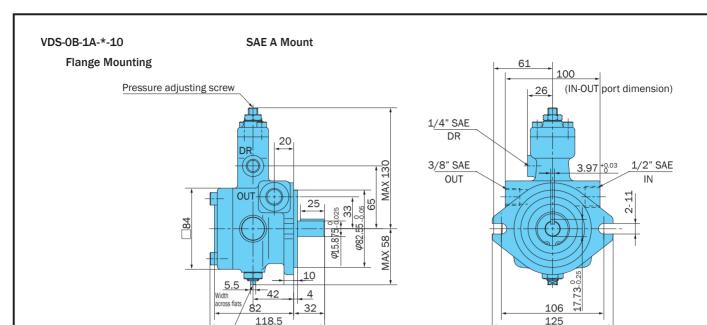

- 10 Suction pressure is 4.35 psi, and the suction port flow rate should to greater than 6 ft/sec.
- 11 Avoid pulley, gear, and other drive systems that impart a radial or thrust load on the end of the pump shaft.

 Mount the pump so its pump shaft is oriented horizontally.
- 12 Provide a suction strainer with a filtering grade of about 100 μm (150 mesh). For the return line to the tank, use a 10 μm line filter.
- 13 Manage hydraulic operating fluid so contamination is maintained at class NAS10 or lower. Take care to avoid contamination with water or other foreign matter, and watch for discoloration. Whitish fluid indicates that air has contaminated the fluid, and brownish fluid indicates the fluid is dirty.
- 14 Contact your agent about using waterand glycol-based hydraulic operating fluids.
- 15 At startup, repeat the inching operation

- (start-stop) to bleed air from the pump and pipes.
- 16 Equip an air bleed valve in circuits where it is difficult to bleed air before startup. See page C-13 for more information.
- 17 To ensure proper lubrication of the pump's rubbing surfaces, supply oil to the interior of the pump before starting operation.
- 18 When centering the pump shaft, eccentricty with the motor shaft should be no greater than 0.001 in.

 The angle error should be no greater than 1°.

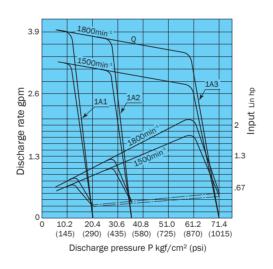

Understanding Model Numbers

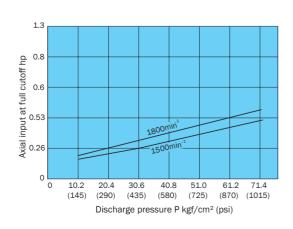


Installation Dimension Drawings

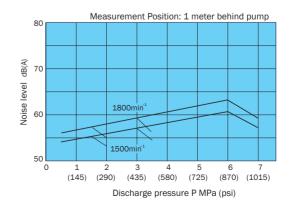
VDS-0A-1A-*-10

Foot Mounting Type mm (inch)

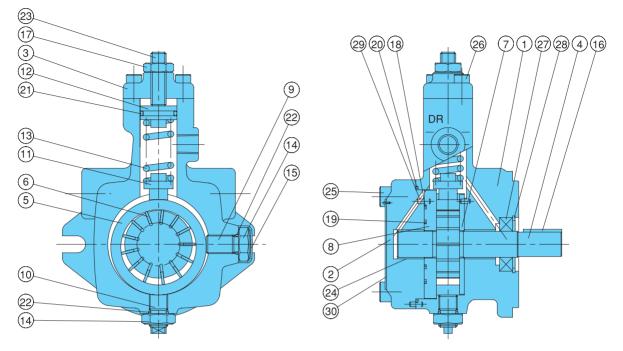



Flow rate adjusting screw

Specifications


Typical characteristics at hydraulic operating fluid kinematic viscosity of 32 centistokes

Axial Input at Full Cutoff



Noise Characteristics

Cross-Sectional Drawing

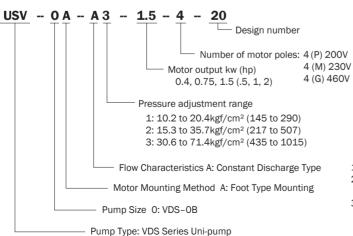
VDS-0B-1A*-10

List of Sealing Parts Seal Kit: VBAS-100B00

Applicable Pump Model: VDS-0A/B-1A *10

Part No.	Part Name	Part Number	Q'ty
18	0-ring	AS568-032	1
19	0-ring	AS568-023	1
20	0-ring	S71 (NOK)	1
21	0-ring	1A-P20	1
22	0-ring	1A-P10	2
27	Oil seal	TC-17358	1

Note:

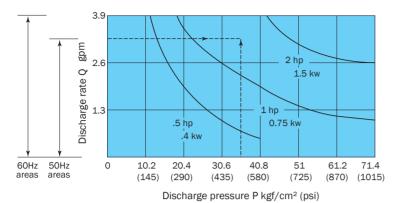

- 1. Oil seals are manufactured by Nippon Oil Seal Industry Co. Ltd. (NOK).
- 2. O-ring 1A/B-** refers to JIS B2401-1A.

Part No.	Part Name	Part No.	Part Name
1	Body	16	Key
2	Cover (A)	17	Nut
3	Cover (B)	18	0-ring
4	Shaft	19	0-ring
5	Cam ring	20	0-ring
6	Vane	21	0-ring
7	Plate (S)	22	0-ring
8	Plate (H)	23	Screw
9	Thrust screw	24	Bearing
10	Screw	25	Screw
11	Piston	26	Screw
12	Holder	27	Oil seal
13	Spring	28	Snap ring
14	Nut	29	Pin
15	Сар	30	Nameplate

Uni-Pump Specifications

(CE mark standard compliant)

Understanding Model Numbers


Cartridge Kit: VBAC-100*A*

Includes Items: 4, 5, 6, 7, 8, 16, 29

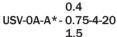
Maximum Working Pressure	Maximum Flow Rate gpm				
kgf/cm (psi)	50Hz	60Hz			
71.4 (1015)	3.30	3.94			

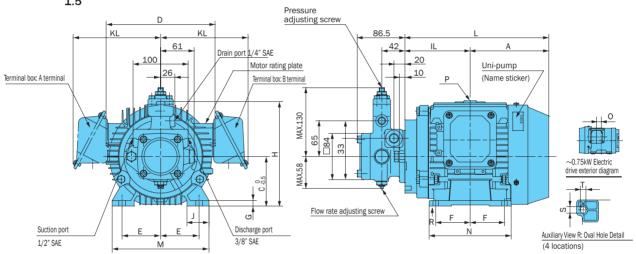
- 1. Standard drive motor is the fully enclosed fan-cooled B type.
- Standard voltage for drive motor is 200 VAC, 50/60 Hz or 220 VAC, 60 Hz.
- 3. Standard terminal box is B terminal (right side viewed from pump).

Motor Selection Curves

· How to select a motor

The area under a motor output curve in the graph to the left is the operating range for that motor under the rated output for that motor.


Example:


To find the motor that can produce pressure of 507 psi and a discharge rate of 3.3 gpm.

Selection Process:

Since the intersection of the two broken lines from a pressure of 507 psi and discharge rate of 3.3 gpm intersect in the area under the 2 hp curve, it means that a 2 hp motor should be used.

Installation Dimension Drawings

Uni-pump							Moto	r Dime	nsions	mm							No lab	Weight	
On pump	Α	IL	С	D	Е	F	G	Н	J	L	М	N	S×T	KD	KL	0		lbs	
USV-0A-A1-0.4-4-20																			
USV-0A-A2-0.4-4-20	121	107.5	71	150	56	45	2.3	146	30	228.5	140	110	15 × 7	φ27	151	35	71M	0.5	30
USV-0A-A3-0.4-4-20																			
USV-0A-A1-0.75-4-20																			
USV-0A-A2-0.75-4-20	133	107.5	80	170	62.5	50	4.5	165	35	240.5	165	130	18 × 10	φ27	157	27.5	80M	1.0	42
USV-0A-A3-0.75-4-20																			
USV-0A-A3-1.5-4-20	143	118.5	90	198	70	62.5	10	190	40	261.5	176	150	12 × 10	φ27	159	-	90L	2	45

 $^{^{\}star}$ See page A-21 for the characteristics of the drive motor for the unipump (domestic standard 3 rating).

^{*} Select a uni-pump that has a pressure and flow rate that is within the range of the drive so that the drive will not overload.

NACHI

VDR Design Series Variable Volume Vane Pump

7.9 gpm at 2030 psi 10.5 gpm at 1000 psi

Features

Stable, highly efficient operation up to 2030 psi

A biased piston that minimizes ring vibration and leak-free pressure balance construction enables highly efficient highpressure operation, and very stable performance up to 2030 psi.

High-precision instantaneous response

Response has been improved by a special bias piston mechanism. Prompt response at both ON-OFF and OFF-ON

ensures instantaneous, stable, high-precision operation.

Silent operation, even in the high pressure range

CQuiet journal bearings, a bias piston that allows a 3-point support system, and new suction and discharge port shapes all contribute to minimize operation noise. Silent, vibration-free operation is ensured, even in the high pressure range.

Reduced power loss

A combination of NACHI-original mechanical innovations and precision machining create a pump that minimizes power loss, especially at full cutoff.

Solid construction stands up to harsh operating conditions

The tough and rugged construction of this pump is made possible by a long history of quality pump designs. This, in combination with specially selected materials and skilled workmanship, provides outstanding durability.

Specifications

Single Pump

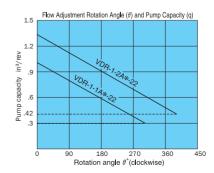
	Model Type Foot Mounting Flange Mounting		No-load I	Discharge Rate I/m	nin (gpm)	Pressure Adjustment Range	Allowable Peak Pressure	Revolution S	Speedmin -1	Weight
			1800 rpm	1500 rpm	1200 rpm	psi	psi	Min.	Max.	lbs
	VDR-1A-1A2-*22 VDR-1A-1A3-*22 VDR-1A-1A4-*22 VDR-1A-1A5-*22	VDR-1B-1A2-*22 VDR-1B-1A3-*22 VDR-1B-1A4-*22 VDR-1B-1A5-*22	30 (7.9)	25 (6.6)	20 (5.3)	217 ~ 507 435 ~ 1015 942 ~ 1522 1305 ~ 2030	500 1000 1500 2000	800	1800	19.9
	VDR-1A-2A2-*22 VDR-1A-2A3-*22	VDR-1B-2A2-*22 VDR-1B-2A3-*22	40 (10.6)	33 (8.7)	27 (7.1)	214 ~ 500 429 ~ 1000	500 1000	800	1800	19.9

Double Pump

Model No.	Vei	Vent Side		Shaft Side	Vent Side	Shaft Side	Revolution S	Speedmin -1	Weight
Foot Mounting Type (Flange Mounting Type)	Discharge Rate gpm	Pressure Adjustment Range psi	Discharge Rate gpm	Pressure Adjustment Range psi	Allowable Pea	ak Pressure si	Min.	Max.	lbs
VDR-11A(B)-1A2-1A2-22 VDR-11A(B)-1A2-1A3-22	7.9	217 ~ 507	7.9	217 ~ 507 435 ~ 1015	20	30	800	1800	37
VDR-11A(B)-1A3-1A3-22	7.0	435 ~ 1015	7.0	435 ~ 1015			000	1800	
VDR-11A(B)-2A2-2A2-22 VDR-11A(B)-2A2-2A3-22	10.5	217 ~ 507	10.5	217 ~ 507 435 ~ 1015	20	30	800	1800	37
VDR-11A(B)-2A3-2A3-22	10.5	435 ~ 1015	10.5	435 ~ 1015			800	1800	31

Note: 1. The discharge rate is the value at 1800min⁻¹ no load.

2. The change from design number 21 to design number 22 represents a change in the shaft key width from .125 in to .187 in. This means that when using a .125 in key coupling, you need to use a stepped key (VD31J-302000) or add a new key groove at .187 in.


Handling

- 1 Rotation Direction
- The direction of rotation is always is clockwise (rightward) when viewed from the shaft side.
- 2 Drain

Drain piping must be direct piping up to a point that is below the tank fluid level, and back pressure due to pipe resistance should not exceed 4.35 psi. When using a pump that has drain ports at two locations, use the drain port that is higher after the pump is installed.

3 Discharge Volume Adjustment
The discharge flow rate is decreased by clockwise (rightward) rotation of the discharge rate adjusting screw, and increased by counterclockwise (leftward) rotation. Loosen the lock nut before making adjustments. After adjustment is complete, re-tighten the lock nut. The graph on the right provides general guidelines for the relationship between the rotation angle of the flow rate adjusting screw and the no-load discharge rate.

(continued on following page)

Flow rate gpm: $Q = \frac{\text{in}^3 \text{ x rpm}}{231}$

- Q: No-load Discharge Rate Q r/min q: Volume cm³/rev
- N: Revolution Speed min⁻¹

The broken line shows the flow volume adjustment range lower limit value. Note:

The values indicated above are at maximum discharge volume with the flow volume adjusting screw at the 0° position.

4 Pressure Adjustment
Pressure is decreased by clockwise
(rightward) rotation of the discharge rate

adjusting screw, and increased by counterclockwise (leftward) rotation.

- 5 Factory Default P-Q Settings (Standard Model)
 - Flow Rate Setting = Maximum flow rate for model as indicated in the catalog
 - Pressure Setting = Pressure shown in table to the right
- 6 Thrust Screw

The thrust screw is precision adjusted at the factory during assembly. Never touch the thrust screw. See callout 21 in the cross-section diagram on page B-11.

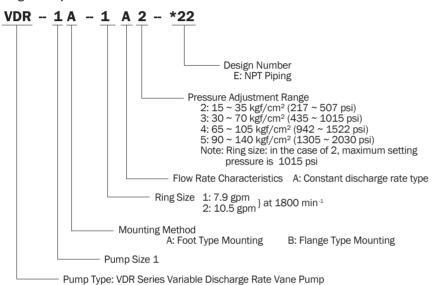
Factory Default Pressure Settings kgf/cm² (psi) 2:35.7 (507) 3:30.6 (435) 4:66.3 (942) 5:91.8 (1305)

7 Initial Operation

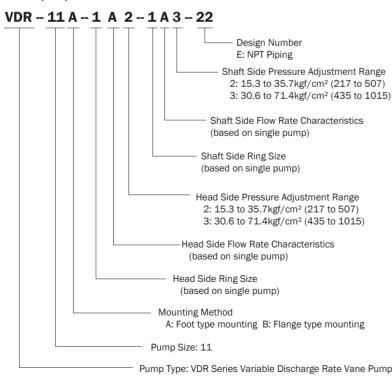
Before operating the pump for the first time, put the pump discharge side into the no-load state and then repeatedly start and stop the motor to bleed all air from inside the pump and the suction piping. After confirming that the pump is discharging oil, continue the noload operation for at least 10 minutes to discharge all the air from the circuit.

Provide an air bleed valve in circuits where it is difficult to bleed air before startup.

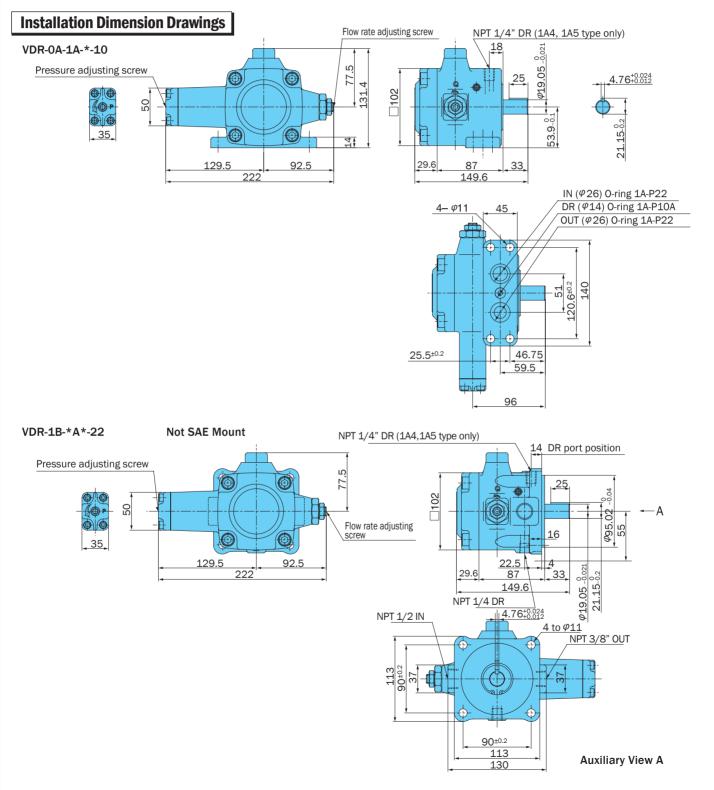
- Sub Plate
- Use the following table for specification when a sub plate is required. For detailed dimensions, see pages B-17 through B-19.
- 9 For the hydraulic operating fluid, use type ISO VG32 or equivalent (viscosity index of at least 90) for pressures of 1015 psi or lower, and type ISO VG68 or equivalent (viscosity index of at least 90) for pressures greater than 10 15 psi.

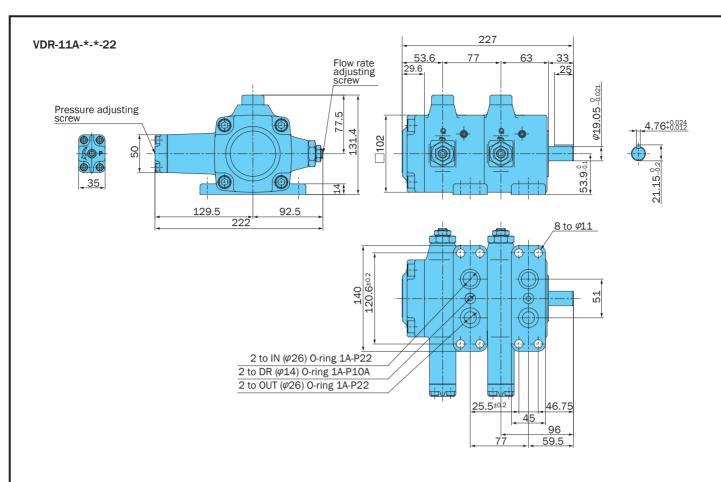

Pump Model No.	Sub Plate Number	Motor(hp)
VDR-1A-1A*-22	MVD-1-115-10	1~2
VDIV-IA-IA -22	MVD-1-135-10	3~5
VDR-1A-2A*-22	MVD-1-115Y-10	1~2
VDIV-1A-2A -22	MVD-1-135Y-10	3~5
VDR-11A-*A* -*A*-22	MVD-11-135-10 MVD-11-135X-10	2~5

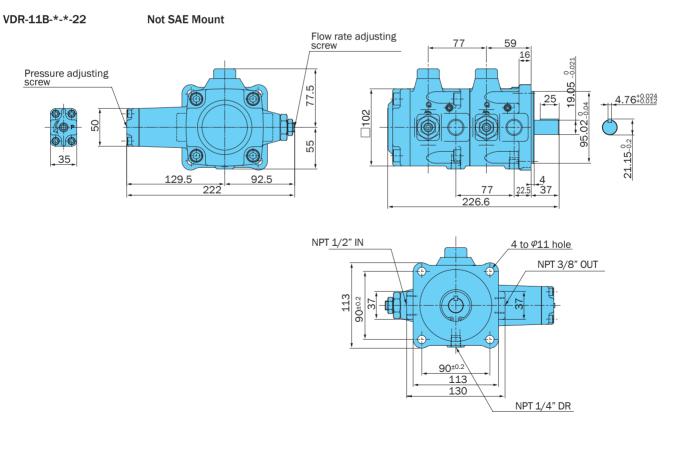
- 10 The operating temperature range is 59 to 140°F. When the oil temperature at startup is 59°F or less, perform a warm-up operation at low pressure until the oil temperature reaches 59°F. Use the pump in an area where the temperature is within the range of 32 to 140°F.
- 11 Suction pressure is 4.35 psi, and the suction port flow rate should be to greater than 6 ft/sec.
- Avoid pulley, gear, and other drive systems 12 that impart a radial or thrust load on the end of the pump shaft. Mount the pump so its pump shaft is oriented horizontally.


(Continued on following page)

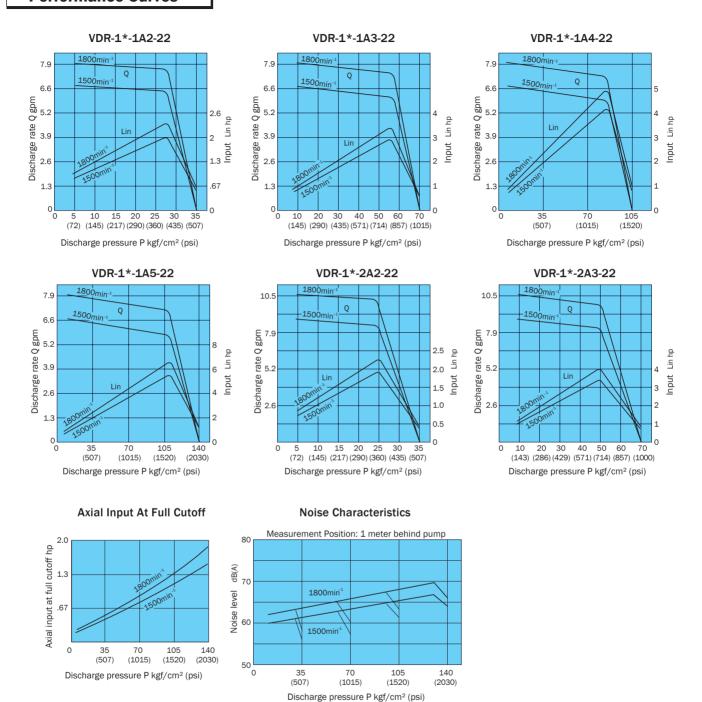
Understanding Model Numbers

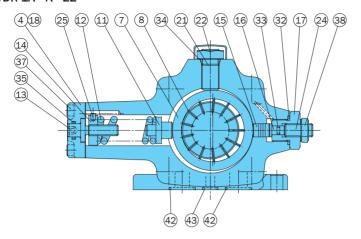

Single Pump

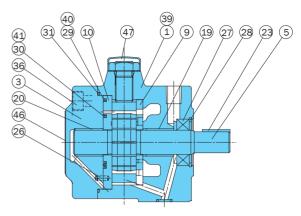



Double pump

- 13 Provide a suction strainer with a filtering grade of about 100 μm (150 mesh). For the return line to the tank, use a 10 μm line filter.
- 14 Manage hydraulic operating fluid so contamination is maintained at class NAS10 or lower. Take care to avoid contamination with water or other foreign matter, and watch out for discoloration. Whitish fluid indicates that air has contaminated the fluid, and brownish
- fluid indicates the fluid is dirty.
- 15 Contact your agent about using waterand glycol-based hydraulic operating fluids
- 16 At startup, repeat the inching operation (start-stop) to bleed air from the pump and pipes.
- 17 Equip an air bleed valve in circuits where it is difficult to bleed air before startup. See page C-13 for more information.
- 18 To ensure proper lubrication of the pump's rubbing surfaces, supply oil to the interior of the pump before starting operation.
- 19 When centering the pump shaft, eccentricity with the motor shaft should be no greater than 0.001 in. Use a pump mounting base of sufficient rigidity. The angle error should be no greater than 1°.




Performance Curves


Typical characteristics at hydraulic operating fluid kinematic viscosity of 32 centistokes.

Cross-Sectional Drawing

VDR-1A-*A*-22

List of Sealing Parts

Single Pump

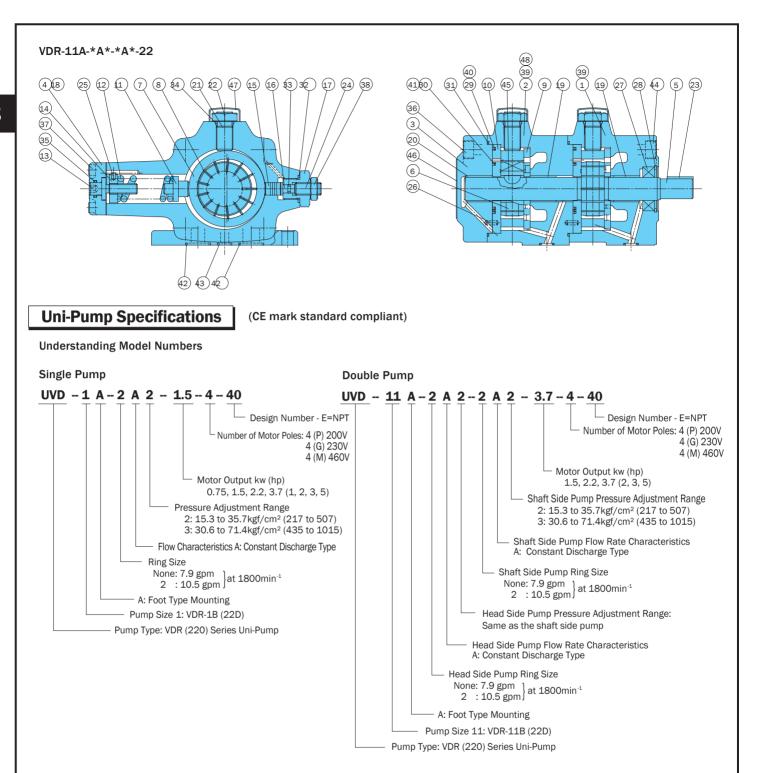
Part	Applicable Pump Model No.	VDR-1A-*-22		
No.	Seal Kit Number	VDBS-101A00)	
140.	Part Name	Part Number	Q'ty	
18	Packing	VDB32-101000	1	
27	Oil seal	ISRD-224211	1	
29	Backup ring	VDB34-101000	1	
30	Backup ring	VDB34-201000	1	
31	O-ring	S85(NOK)	1	
32	0-ring	1A-P22	1	
33	0-ring	1A-P5	1	
34	O-ring	1A-P14	1	
35	O-ring	1A-P12	1	
40	O-ring	AS568-036	1	
41	0-ring	AS568-029	1	
42	0-ring	1A-P22	2	
43	0-ring	1A-P10A	1	

- Note:

 1. Oil seals are manufactured by Nippon Oil Seal Industry Co. Ltd. (NOK).

 2. O-ring 1A.** refers to JIS B2401-1A.**.

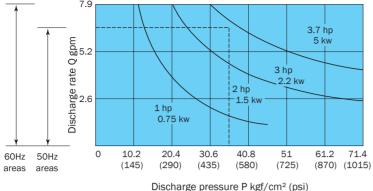
 3. For VDR-1B-*-22, the seal kit number becomes VDBS-101B00, without the 42 and 43 O-rings.


Double Pump

Part	Applicable Pump Model No.	VDR-11A-*-*-2	2
Name	Seal Kit Number	VDBS-111A00	
rvaine	Part Name	Part Number	Q'ty
18	Packing	VDB32-101000	2
27	Oil seal	ISRD-224211	1
29	Backup ring	VDB34-101000	2
30	Backup ring	VDB34-201000	2
31	0-ring	S85(NOK)	2
32	0-ring	1A-P22	2
33	0-ring	1A-P5	2
34	0-ring	1A-P14	2
35	0-ring	1A-P12	2
40	0-ring	AS568-036	2
41	0-ring	AS568-029	2
42	0-ring	1A-P22	4
43	0-ring	1A-P10A	2

Part No.	Part Name	Part No.	Part Name
1	Body (A)	25	Pin
2	Body (B)	26	Spring pin
3	Cover	27	Oil seal
4			Snap ring
5	5 Shaft		Backup ring
6	6 Rotor		Backup ring
7	7 Ring		O-ring
8	Vane	32	O-ring
9	Plate (S)	33	O-ring
10	Plate (H)	34	O-ring
11	Piston	35	O-ring
12	Spring	36	Screw
13	Screw	37	Screw
14	Nut	38	Nut
15	Piston	39	Plug
16	Holder	40	O-ring
17	Adapter	41	O-ring
18	Packing	42	O-ring
19	Bearing (S)	43	O-ring
20	Bearing (H)	44	Screw
21	Thrust screw	45	Key
22	Nut	46	Nameplate
23	Key	47	Сар
24	Screw	48	Pin
	l .		

Cartridge Kit: VDR-1-22; VDBC-101*A* Includes Items: 5, 7, 8, 9, 10, 23, 25


- 1. Oil seals are manufactured by Nippon Oil Seal Industry Co. Ltd. (NOK).
- 2. O-ring 1A-** refers to JIS B2401-1A-**.
 3. For VDR-11B-*-*-22, the seal kit number becomes VDBS-111B00, without the 42 and 43 O-rings.

Specifications

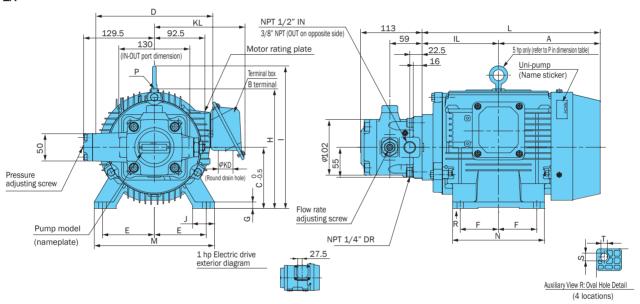
Model No.	Maximum Working Pressure	Maximum Flow R	ate gpm (A*)	Maximum Flow R	ate gpm (2A*)
Wiodel No.	kgf/cm² (psi)	50Hz	60Hz	50Hz	60Hz
UVD-1A UVD-11A	71.4 (1015) 71.4 (1015)	6.6	7.9	8.7	10.5

Motor Selection Curves

^{*} Select a uni-pump that has a pressure and flow rate that is within the range of the drive so that the drive will not overload.

Selecting a motor

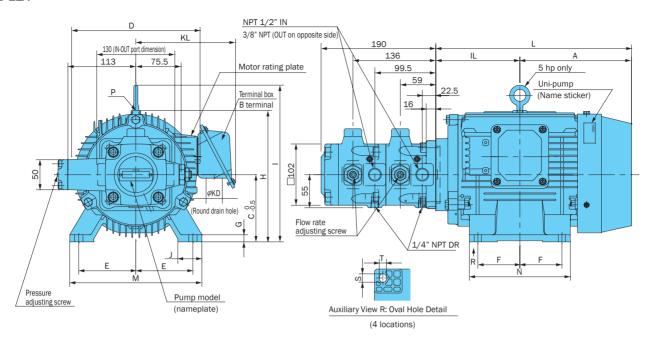
The area under a motor output curve in the graph to the left is the operating range for that motor under the rated output for that motor.


Example:

To find the motor that can produce pressure of 435 psi and a discharge rate of 6.6 gpm.

Selection Process:

Since the intersection of the two broken lines from a pressure of 435 psi and discharge rate of 6.6 gpm intersect in the area under the 3 hp curve, it means that a 3 hp motor should be used. In the case of a double pump configuration, select a motor that is larger than the total power required by both pumps.


Installation Dimension Drawings UVD-1A

Uni-pump		Motor Dimensions mm																Frame	Output hp	Weight
oni-pump	А	IL	С	D	Е	F	G	Н	-1	J	L	М	N	S×T	KD	KL	0	No.	(4 poles)	lbs
UVD-1A-A2-0.75-4-40	133	105	80	170	62.5	50	4.5	165	-	35	238	165	130	18 × 10	φ27	157	27.5	80M	1	53
UVD-1A-A2-1.5-4-40																				
UVD-1A-A3-1.5-4-40	143	118.5	90	198	70	62.5	10	190	-	40	261.5	176	150	12 × 10	φ27	159	-	90L	2	55
UVD-1A-2A2-1.5-4-40																				
UVD-1A-A2-2.2-4-40																				
UVD-1A-A3-2.2-4-40	157.5	133	100	198	80	70	12	200	-	40	290.5	200	168	14 × 12	φ27	159	-	100L	3	66
UVD-1A-2A2-2.2-4-40																				
UVD-1A-A3-3.7-4-40																				
UVD-1A-2A2-3.7-4-40	186	140	112	214	95	70	12	-	261	40	326	220	168	14 × 12	φ27	166	-	112M	5	80
UVD-1A-2A3-3.7-4-40																				

- 1 3 hp model does not have hangers.
- 1. Standard drive motor is the fully enclosed fan-cooled B type.
- 2. Standard voltage for drive motor is 200 VAC, 50/60 Hz or 220 VAC, 60 Hz.
- 3. Standard terminal box is B terminal (right side viewed from pump).
- $4. \, \text{See page A-21 for the characteristics of the drive motor for the unipump (domestic standard 3 \, \text{rating})}. \\$

UVD-11A

Uni-Pump	Motor Dimensions mm										Frame	Output hp	Weight								
On-Fullip	А	IL	С	D	Е	F	G	Н	-1	J	L	М	N	S×T	KD	KL	0	No.	(4 poles)	Ibs	
UVD-11A-A2-A2-1.5-4-40																					
UVD-11A-A2-A3-1.5-4-40	143	118.5	90	198	70	62.5	10	190	-	40	261.5	176	150	12 × 10	φ27	159	-	90L	2	73	
UVD-11A-A3-A3-1.5-4-40																					
UVD-11A-A2-A2-2.2-4-40																					
UVD-11A-A2-A3-2.2-4-40	157.5	133	100	198	80	70	12	200		40	290.5	200	168	14 × 12	φ27	159	_	100L	3	84	
UVD-11A-A3-A3-2.2-4-40	137.3	133	100	130		10	12	200		40	290.5	200	100	14 ^ 12	ΨΖΙ	139		1001	3	04	
UVD-11A-2A2-2A2-2.2-4-40																					
UVD-11A-A2-A2-3.7-4-40																					
UVD-11A-A2-A3-3.7-4-40																					
UVD-11A-A3-A3-3.7-4-40	186	140	112	214	95	70	12	-	261	40	326	220	168	14 × 12	φ27	166	_	112M	5	97	
UVD-11A-2A2-2A2-3.7-4-40					33																
UVD-11A-2A2-2A3-3.7-4-40																					

- 1. 2 to 3 hp model does not have hangers.
- 1. Standard drive motor is the fully enclosed fan-cooled B type.
- 2. Standard voltage for drive motor is 200 VAC, 50/60 Hz or 220 VAC, 60 Hz.
- 3. Standard terminal box is 8 terminal (right side viewed from pump).

 4. See page A-21 for the characteristics of the drive motor for the unipump (domestic standard 3 rating).

VDR13 Design Series Variable Volume Vane Pump

5.2 to 11.8 gpm 870 psi

The new design number 13 was created by modifying some of the components of old design numbers 11 and 12, and the new design installation is compatible with the old design.

Features

Energy efficient, economical operation

Built-in high-precision temperature compensation mechanism

The ring is displaced by a spring, and a rise in pressure automatically moves it to the center to make the discharge rate zero.

Relief valve and unloading valve can be eliminated from the circuit. It was possible to reduce the size of the unit because there was no increase of proportional input to pressure which prevented increases in the temperature of the fluid.

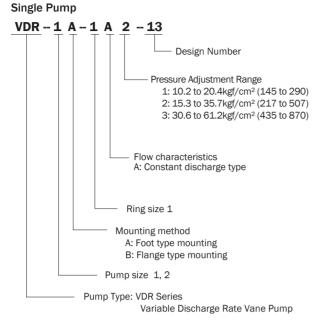
New design for lower noise and improved durability

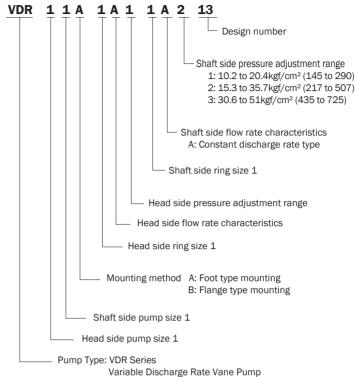
- Handling
- 1 Rotation Direction The direction of rotation is always is clockwise (rightward) when viewed from the shaft side.
- 2 Drain Drain piping must be direct piping up to a point that is below the tank fluid level, and back pressure due to pipe resistance should not exceed 4.35 psi.

Specifications

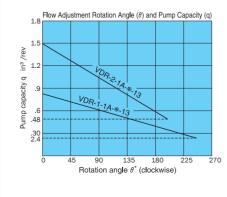
Single Pump

Model No.	Capacity	No-	load Discharg	ge Rate (gpm)		Pressure Adjustment Range	Allowable Peak Pressure		on Speed in ⁻¹	Weight
Woder No.	in³/rev	1000min ⁻¹	1200min ⁻¹	1500min ⁻¹	1800min ⁻¹	kgf/cm² (psi)	kgf/cm² (psi)	Min.	Max.	lbs
VDR-1A(B) -1A1-13 -1A2- -1A3-	.84 .84 .67	3.6 3.6 2.9	4.3 4.3 3.9	5.5 5.5 4.5	6.6 6.6 5.2	10.2 ~ 20.6 (145 ~ 290) 15.3 ~ 35.7 (217 ~ 507) 30.6 ~ 61.2 (435 ~ 870)	143 (2030)	800	1800	17.6
VDR-2A(B) -1A1-13 -1A2- -1A3-	1.5 1.5 1.3	6.6 6.6 5.8	7.9 7.9 7.0	10 10 8.9	11.8 11.8 10.5	10.2 ~ 20.6 (145 ~ 290) 15.3 ~ 35.7 (217 ~ 507) 30.6 ~ 61.2 (435 ~ 870)	143 (2030)	800	1800	46


Double Pump


Model No.	Ve	nt Side		Shaft Side	Vent Side	Shaft Side	Revolution	on Speed	
Foot Mounting Type (Flange Mounting Type)	Discharge Rate gpm	Pressure Adjustment Range kgf/cm² (psi)	Discharge Rate gpm	Pressure Adjustment Range kgf/cm² (psi)	Allowable Pe kgf/cn	ak Pressure n² (psi)	Min.	Max.	Weight Ibs
VDR-11A(B)-1A1-1A1-13 VDR-11A(B)-1A1-1A2-13 VDR-11A(B)-1A1-1A3-13		10.2 ~ 20.6 (145 ~ 290)	6.6	10.2 ~ 20.6 (145 ~ 290) 15.3 ~ 35.7 (217 ~ 507) 30.6 ~ 51 (435 ~ 725)	1 ² (20				A:30
VDR-11A(B)-1A1-1A3-13 VDR-11A(B)-1A2-1A2-13	6.6	15.3 ~ 35.7	5.2 6.6	15.3 ~ 35.7 (217 ~ 507)	14	800	1800	B:30	
VDR-11A(B)-1A3-1A3-13	5.2	(217 ~ 507) 30.6 ~ 51 (435 ~ 725)	5.2 5.2	30.6 ~ 51 (435 ~ 725) 30.6 ~ 51 (435 ~ 725)	143 (2				

Note: 1. The discharge rate is the value at 1800min⁻¹ no-load.


- 2. In addition to this model, the VDC Series (maximum working pressure: 2030 psi) high-pressure variable vane pump is also available. See page B-25 for more information.
- 3. The change from VDR-1 Series design number 11 to design number 12 represents a change in the shaft key width from .125 in. to .187 in. This means that when using a .125 in. key coupling, you need to use a stepped key (VD31J-302000) or add a new key groove at .187 in.
- 4. There is no change in the mounting method with the change from the VDR-1 size design number 12 and VDR-2 design number 11 to design number 13.

Understanding Model Numbers

- 3 Discharge Volume Adjustment
 The discharge flow rate is decreased by clockwise (rightward) rotation of the discharge rate adjusting screw, and increased by counterclockwise (leftward) rotation. Loosen the lock nut before making adjustments. After adjustment is complete, re-tighten the lock nut. The graph below provides general guidelines for the relationship between the rotation angle of the flow rate adjusting screw and the no-load discharge rate.
 However:
 - Q: Flow rate gpm = $\frac{\text{in}^3 \text{ x rpm}}{231}$
- 4 Pressure Adjustment
 Pressure is decreased by clockwise
 (rightward) rotation of the discharge rate
 adjusting screw, and increased by
 counterclockwise (leftward) rotation.

- 5 Factory Default P-Q Settings (Standard Model)
 - Flow Rate Setting = Maximum flow rate for model as indicated in the catalog

Double Pump

- Pressure Setting = Pressure shown in table to the right
- 6 Initial Operation
- Before operating the pump for the first time, put the pump discharge side into the no-load state and then repeatedly start and stop the motor to bleed all air from inside the pump and the suction piping. After confirming that the pump is discharging oil, continue the no-load operation for at least 10 minutes to discharge all the air from the circuit. Provide an air bleed valve in circuits where it is difficult to bleed air before startup.
- 7 Sub Plate
 - When a sub plate is required, specify a sub-plate type from the table in the installation dimension diagram.
- R&O type and wear-resistant type of ISO VG32 to 68 or equivalent (viscosity index of at least 90). Use hydraulic operating

Note) The values indicated above are at maximum pump discharge volume with the flow volume adjusting screw at the 0° position.

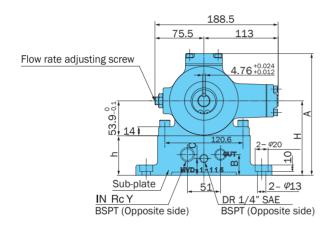
The broken line shows the flow volume adjustment range lower limit value.

Factory Default Pressure Settings kgf/cm² (psi)

1: 20.4 (290) 2: 35.7 (507) 3: 30.6 (435)

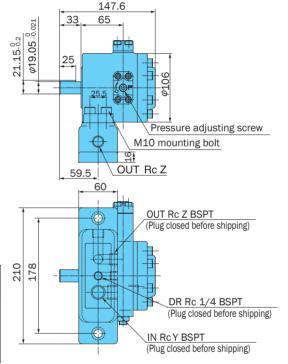
fluid that provides kinematic viscosity during operation in the range of 20 to 150 centistokes.

- The operating temperature range is 59 to 140°F. When the oil temperature at startup is 59°F or less, perform a warm-up operation at low pressure and low speed until the oil temperature reaches 59°F. Use the pump in an area where the temperature is within the range of 32 to 140°F.
- 10 Suction pressure is 4.35 psi, and the suction port flow rate should be to greater than 6 ft/sec.

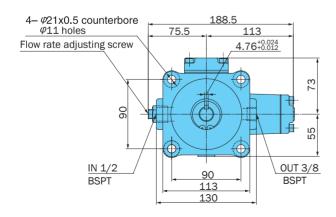

- 11 Avoid pulley, gear, and other drive systems that impart a radial or thrust load on the end of the pump shaft. Mount the pump so its pump shaft is oriented horizontally.
- 12 Provide a suction strainer with a filtering grade of about 100µm (150 mesh). For the return line to the tank, use a 10µm line filter.
- 13 Manage hydraulic operating fluid so contamination is maintained at class NAS10 or lower. Take care to avoid contamination with water and other foreign matter, and watch out for

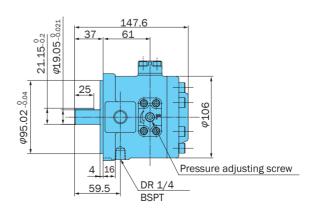
- discoloration.
- Whitish fluid indicates that air has contaminated the fluid, and brownish fluid indicates the fluid is dirty.
- 14 At startup, repeat the inching operation (start-stop) to bleed air from the pump and pipes.
- 15 Equip an air bleed valve in circuits where it is difficult to bleed air before startup. See page C-13 for more information.
- 16 To ensure proper lubrication of the pump's rubbing surfaces, supply oil to the interior of the pump before

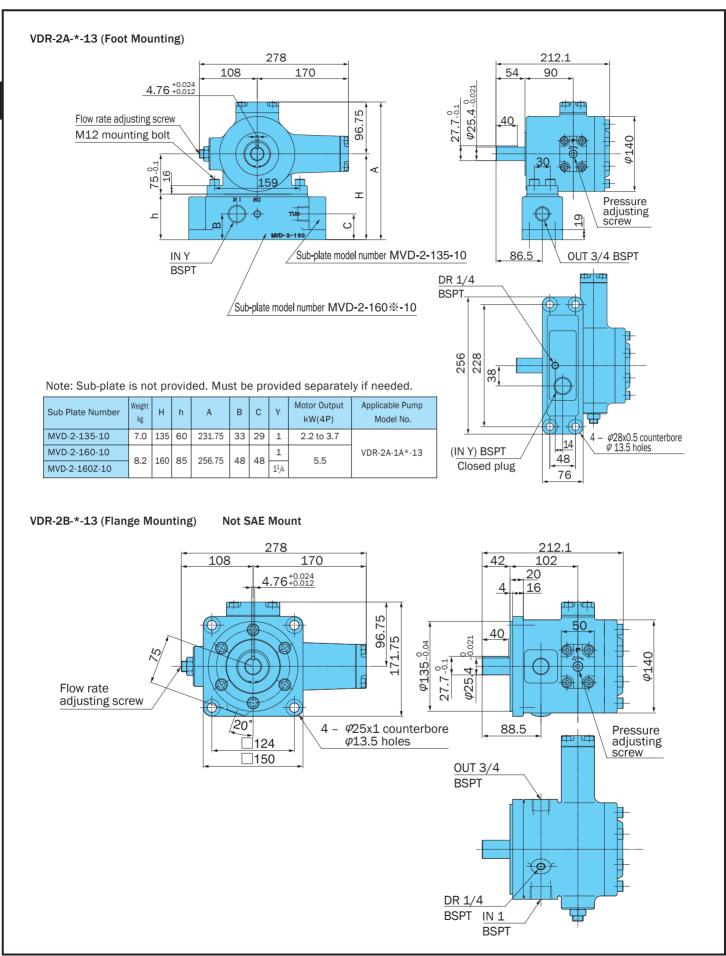
- starting operation.
- 17 When centering the pump shaft, eccentricity with the motor shaft should be no greater than 0.05mm. Use a pump mounting base of sufficient rigidity. The angle error should be no greater than 1°.


Installation Dimension Drawings

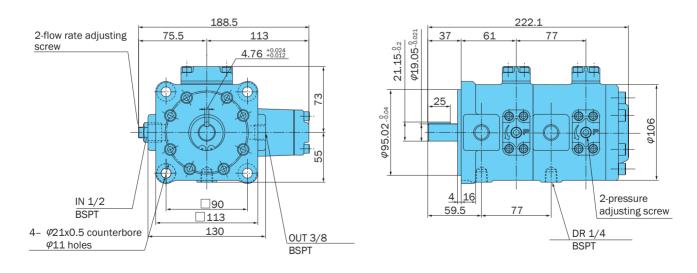
VDR-1A-*-13 (Foot Mounting)

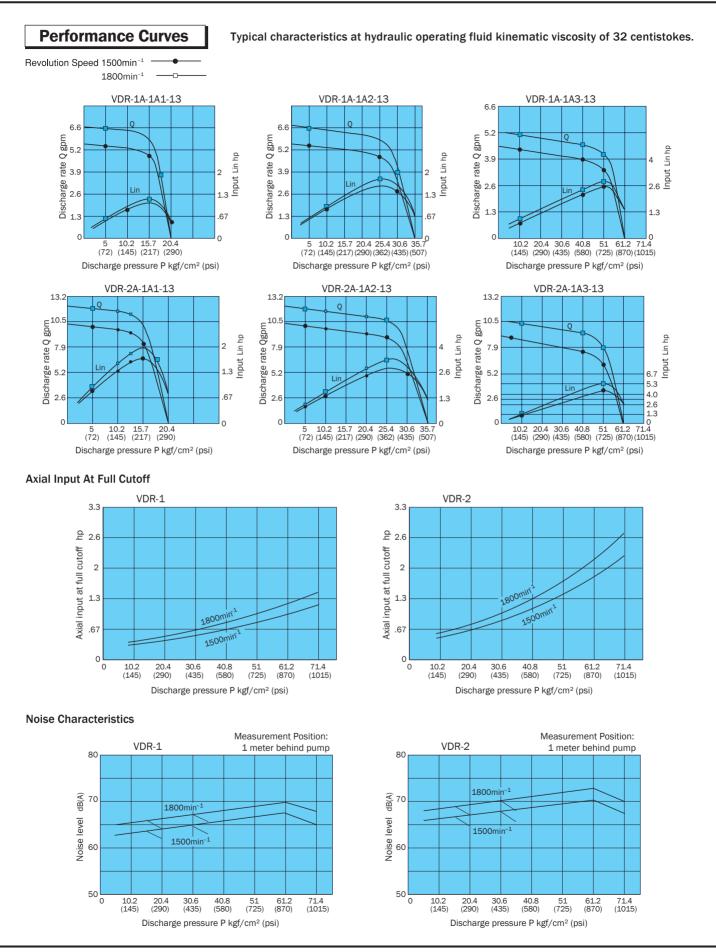



Note: Sub-plate is not provided. Must be provided separately if needed.


Sub Plate Number	Weight Ib	Н	h	А	В	С	Y	Z	Motor Output hp (4P)
MVD-1-115-10	8	115	61.1	188	32	26	1/2	3/8	1 to 2
MVD-1-115Y-10	°	113	01.1	100	32	20	3/4	1/2	1 (0 2
MVD-1-135-10	10.0	105	04.4	208	40	40	1/2	3/8	2+- 5
MVD-1-135Y-10	10.8	135	81.1	208	40	40	3/4	1/2	3 to 5

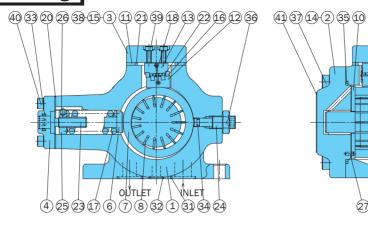
VDR-1B-*-13 (Flange Mounting) Not SAE Mount

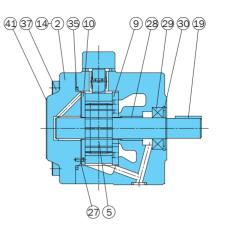




VDR-11A-*-13 (Foot Mounting) 2-pressure adjusting 75.5 113 32.5 65 screw 2-flow rate adjusting screw 21.15-0.2 \$19.05-0 4.76 +0.024 +0.012 73 53.9-0.1 120.6 ±0.35 M10 mounting bolt 81.1 2 to 4 2 77 OUT Z BSPT 8 OUT Z 38 42 (Opposite side) **BSPT** IN 1 BSPT DR 3/8 BSPT (Opposite side) (Opposite side) 2- Φ20x12 counterbore φ 13 holes DR 3/8 BSPT (Plug closed before shipping) Note: Sub-plate is not provided. Must be provided separately if needed. L85 L58 Applicable Pump Model Weight Sub Plate Number lbs No. MVD-11-135-10 3/8 VDR-11A-1A*-1A*-13 10.3 MVD-11-135X-10 1/2 IN 1 BSPT

VDR-11B-*-*-13 (Flange Mounting) Not SAE Mount

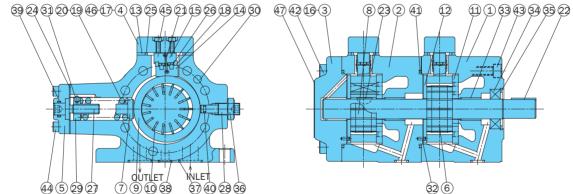



Plug closed before shipping

Cross-sectional Drawing

VDR-1A-*-13 VDR-2A-*-13

List of Sealing Parts


	_					
Part	Applicable Pump Model No.	VDR-1A-*-13	3	VDR-2A-*-13	3	
No.	Seal Kit Number	VDAS-101A0	0	VDAS-102A0	0	
110.	Part Name	Part Number	Q'ty	Part Number	Q'ty	
20	Packing	VD32J-101000	1	VD32J-102000	1	
21	Square ring	VD33J-101000	1	1A-G45	1	
29	Oil seal	ISRD-204010	1	ISP-284811	1	
31	0-ring	1A-P20	2	1A-G30	2	
32	0-ring	1A-P10A	1	1A-P12	1	
33	0-ring	1A-P12	1	1A-P14	1	
34	0-ring	1A-P5	1	1A-P9	1	
35	0-ring	1A-G70	1	1A-G100	1	

Note: 1. Oil seals are manufactured by Nippon Oil Seal Industry Co. Ltd. (NOK) 2. O-ring 1A.** refers to JIS B2401-1A-**.

3. For VDR-*B-*-13, the seal kit number becomes VDBS-10*B00, without the 31 and 32 O-rings.

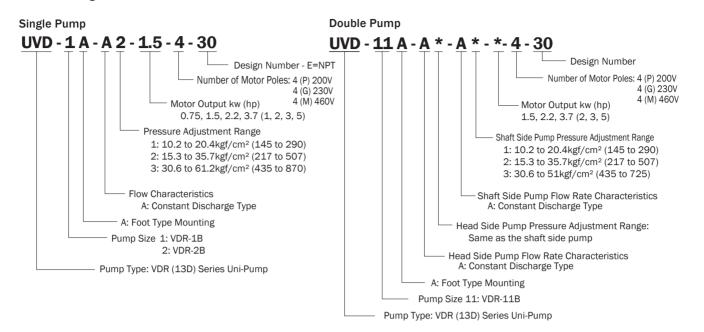
Part No.	Part Name	Part No.	Part Name	Part No.	Part Name
1	Body	15	Shim	29	Oil seal
2	Cover	16	Retainer	30	Snap ring
3	Cover	17	Spring	31	O-ring
4	Cover	18	Spring	32	O-ring
5	Shaft	19	Key	33	O-ring
6	Piston	20	Packing	34	O-ring
7	Ring	21	Square ring (0-ring)	35	O-ring
8	Vane	22	Needle	36	Nut
9	Plate (S)	23	Screw	37	Screw
10	Plate (H)	24	Screw	38	Screw
11	Plate	25	Nut	39	Screw
12	Holder	26	Pin	40	Screw
13	Holder	27	Pin	41	Nameplate
14	Shim	28	Bearing		

VDR-11A-*-13

List of Sealing Parts

Part	Applicable Pump Model No.	VDR-11A-*-*-	13
No.	Seal Kit Number	VDAS-111A0	0
140.	Part Name	Part Number	Q'ty
24	Packing	VD32J-101000	2
25	Square ring	VD33J-101000	2
34	Oil seal	ISRD-204010	1
37	0-ring	1A-P20	4
38	0-ring	1A-P10A	2
39	0-ring	1A-P12	2
40	0-ring	1A-P5	2
41	0-ring	1A-G70	2

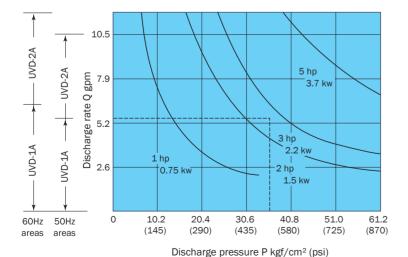
Part No.	Part Name	Part No.	Part Name	Part No.	Part Name
1	Body	11	Plate (S)	21	Spring
2	Body	12	Plate (H)	22	Key
3	Cover	13	Plate	23	Key
4	Cover	14	Holder	24	Packing
5	Cover	15	Holder	25	Square ring
6	Shaft	16	Shim	26	Needle
7	Piston	17	Shim	27	Screw
8	Rotor	18	Retainer	28	Screw
9	Ring	19	Spring	29	Nut
10	Vane	20	Spring	30	Pin
	1		1		l


Note: 1. Oil seals are manufactured by Nippon Oil Seal Industry Co. Ltd. (NOK).
2. O-ring 1A-** refers to JIS B2401-1A-**.
3. For VDR-11B-*-*-13, the seal kit number becomes VDBS-111B00, without the 37 and 38 O-rings.

Part No.	Part Name
31	Pin
32	Pin
33	Bearing
34	Oil seal
35	Snap ring
36	Nut
37	O-ring
38	O-ring
39	O-ring
40	O-ring
41	O-ring
42	Screw
43	Screw
44	Screw
45	Screw
46	Screw
47	Nameplate

Performance Curves

(CE mark standard compliant)


Understanding Model Numbers

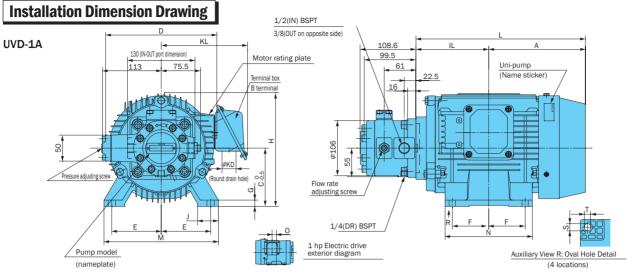
Specifications

Model No.	Maximum Working Pressure	Maximum Fl	ow Rate gpm
Wiodel IVO.	kgf/cm² (psi)	50Hz	60Hz
UVD- 1A	61.2 (870)	5.5	6.6
UVD- 2A	51.0 (725)	10	11.8
UVD- 11A	51.0 (725)	5.5	6.5-6.6

Motor Selection Curves

*Select a uni-pump that has a pressure and flow rate that is within the range of the drive so that the drive will not overload.

Selecting a motor

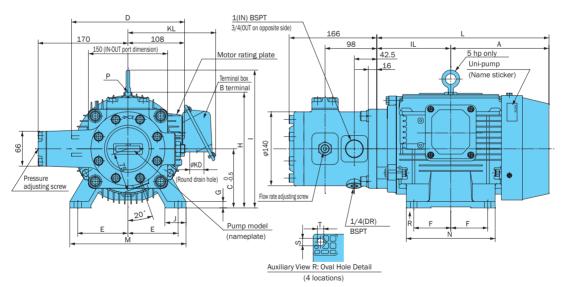

The area under a motor output curve in the graph to the left is the operating range for that motor under the rated output for that motor.

Example:

To find the motor that can produce pressure of 507 psi and a discharge rate of 5.5 gpm.

Selection Process:

Since the intersection of the two broken lines from a pressure of 507 psi and discharge rate of 5.5 gpm intersect in the area under the 3 hp curve, it means that a 3 hp motor should be used. In the case of a double pump configuration, select a motor that is larger than the total power required by both pumps.



							Motor	Dime	nsions	mm							Frame	Output	Weight
Uni-pump A	А	IL	С	D	Е	F	G	Н	J	L	М	N	S×T	KD	KL	0	No.	hp (4poles)	lbs
UVD-1A-A1-0.75-4-30	133	105	80	170	62.5	50	4.5	165	35	238	165	130	18 × 10	σ27	157	27.5	80M	1	50
UVD-1A-A2-0.75-4-30	133	103	00	110	02.5	30	4.0	100	30	230	100	130	10 ^ 10	ΨΖΙ	137	21.3	OUW	1	30
UVD-1A-A2-1.5-4-30	143	118.5	90	198	70	62.5	10	190	40	261.5	176	150	12 × 10	σ27	159	_	90L	2	53
UVD-1A-A3-1.5-4-30	143	110.5	30	130	10	02.5	10	130	40	201.5	170	130	1210	ΨΖΙ	133		301	4	33
UVD-1A-A3-2.2-4-30	157.5	133	100	198	80	70	12	200	40	290.5	200	168	14 × 12	φ27	159	-	100L	3	64

- No hanger.

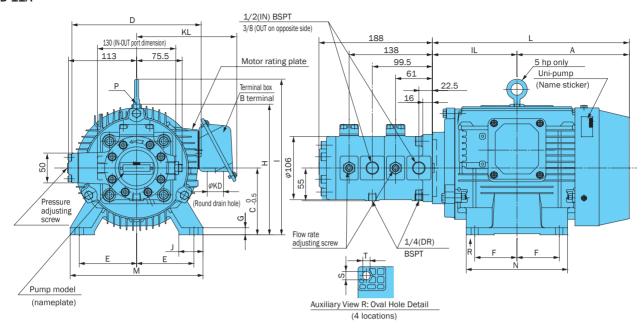
 1. Standard drive motor is the fully enclosed fan-cooled B type.
- 2.Standard voltage for drive motor is 200 VAC, 50/60 Hz or 220 VAC, 60 Hz.
- 3.Standard terminal box is B terminal (right side viewed from pump).
 4.See page A-21 for the characteristics of the drive motor for the unipump (domestic standard 3 rating).

UVD-2A

		Motor Dimensions mm							- I	Output	ha Inoight									
Uni-pump	А	ΙL	С	О	Е	F	G	Н	-1	J	L	М	N	S×T	KD	KL	0		hp (4poles)	lbs
UVD-2A-A1-1.5-4-30	143	118.5	90	198	70	62.5	10	190	_	40	261.5	176	150	12 × 10	φ27	159	_	90L	2	84
UVD-2A-A2-1.5-4-30	143	110.5	90	190	10	02.5	10	190		40	201.5	1/0	130	12 ^ 10	ΨΖΙ	109		901		04
UVD-2A-A2-2.2-4-30	157.5	133	100	198	80	70	12	200	_	40	290.5	200	168	14 × 12	φ27	159	_	100L	3	95
UVD-2A-A3-2.2-4-30	137.3	133	100	190	00	10	12	200		40	290.5	200	100	14 ^ 12	ΨΖΙ	109		1001	3	90
UVD-2A-A2-3.7-4-30	186	140	112	214	95	70	12		261	40	326	220	168	14 × 12	σ27	166	_	112M	5	108
UVD-2A-A3-3.7-4-30	100	140	112	214	20	10	12		201	40	320	220	100	14 ^ 12	ΨΖΙ	100		TTZIVI	5	109

- 2 to 3 hp model does not have hangers.

- 2 to 3 np model does not have hargers.


 1.Standard drive motor is the fully enclosed fan-cooled B type.

 2.Standard voltage for drive motor is 200 VAC, 50/60 Hz or 220 VAC, 60 Hz.

 3.Standard terminal box is B terminal (right side viewed from pump).

 4.See page A-21 for the characteristics of the drive motor for the unipump (domestic standard 3 rating).

UVD-11A

Uni-pump							Мо	tor Di	mensio	ons m	m							Frame	Output hp	Weight	
On pamp	А	IL	С	D	Е	F	G	Н	_	J	L	М	N	S×T	KD	KL	0	No.	(4poles)	lbs	
UVD-11A-A1-A1-1.5-4-30								10 190						12 × 10	φ27						
UVD-11A-A1-A2-1.5-4-30									190	40	40 261.5	261.5 176	5 150						2		
UVD-11A-A1-A3-1.5-4-30	440	4405	90	400	70	00.5	40									450	_	90L			
UVD-11A-A2-A2-1.5-4-30	143	118.5	90	198	10	62.5	10									159	_			66	
UVD-11A-A2-A3-1.5-4-30																					
UVD-11A-A3-A3-1.5-4-30																					
UVD-11A-A1-A2-2.2-4-30																					
UVD-11A-A1-A3-2.2-4-30															φ27 159						
UVD-11A-A2-A2-2.2-4-30	157.5	133 10	100 19	198	80	70	12	12 200	-	40	40 290.5	90.5 200 168	168	168 14×12		159	-	100L	3	77	
UVD-11A-A2-A3-2.2-4-30																					
UVD-11A-A3-A3-2.2-4-30																					
UVD-11A-A1-A3-3.7-4-30																					
UVD-11A-A2-A2-3.7-4-30										l									_		
UVD-11A-A2-A3-3.7-4-30	186	140	112	214	95	70	12	_	261	40	326	220	168	14×12 φ27	φ27	166	_	112M	5	90	
UVD-11A-A3-A3-3.7-4-30																					

No hanger on 2 and 3 hp models.

- Standard drive motor is the fully enclosed fan-cooled B type.
 Standard voltage for drive motor is 200 VAC, 50/60 Hz or 220 VAC, 60 Hz.
 Standard terminal box is B terminal (right side viewed from pump).
 See page A-21 for the characteristics of the drive motor for the unipump (domestic standard 3 rating).

VDC Series High Pressure Type Variable Volume Vane Pump

7.9 to 31.7 gpm 2000 psi

Features

Highly efficient and stable high-pressure operation

Innovative pressure control and pressure balance mechanisms combine with an original 3-point ring support system dramatically improves high-pressure operation. The result is outstanding performance at high pressures up to 2000 psi.

Low vibration and noise

A number of innovative new mechanisms are adopted to minimize vibration and noise. In particular, a 3-point support system is used for the control piston and bias piston to increase ring

stability. This minimizes ring vibration and delivers quiet operation.

Outstanding response, high-precision operation

An innovative new ring stopper eliminates excessive ring displacement and improves response. The result is high precision operation at all times, including during starts, stops, and load changes.

Precise characteristics for a stable discharge rate

A revolutionary new pressure compensator type pressure control mechanism

ensures a highly stable fixed discharge rate, even in the high pressure range.

High efficiency operation with minimal power loss

New mechanical innovations minimize power loss, especially at full cutoff.

Simplified maintenance and handling

Pressure adjusting and discharge rate adjusting mechanisms are located on the same side of the pump for simplified maintenance and handling.

Specifications

Single Pump

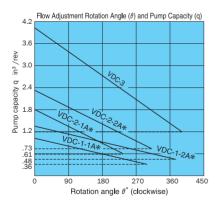
Mo	Model No.		No-load Disch	arge Rate gpm	Pressure Adjustment Range	Allowable Peak Pressure	Revolutio mi	n Speed n ⁻¹	Weight
Foot Mounting	Flange Mounting	in³/rev	1500min ⁻¹	1800min ⁻¹	kgf/cm (psi)	kgf/cm (psi)	Min.	Max.	lbs
VDC-1A-1A2-*20 VDC-1A-1A3-*20	VDC-1B-1A2-*20/35 VDC-1B-1A3-*20/35	1.0	6.6	7.9	15.3 to 35.7 (217 to 507) 20.4 to 71.4 (290 to 1000)	143 (2000)	800	1800	21
VDC-1A-1A4-*20 VDC-1A-1A5-*20	VDC-1B-1A4-*20/35 VDC-1B-1A5-*20/35	1.0	1.0 0.6		51 to 107 (725 to 1500) 71.4 to 143 (1000 to 2000)	214 (3000)	800	1300	<u> </u>
VDC-1A-2A2-*20 VDC-1A-2A3-*20	VDC-1B-2A2-*20/35 VDC-1B-2A3-*20/35	1.3	8.7	10.5	15.3 to 35.7 (217 to 507) 20.4 to 71.4 (290 to 1000)	143 (2000)	800	1800	21
VDC-2A-1A2-*20 VDC-2A-1A3-*20	VDC-2B-1A2-*20/35 VDC-2B-1A3-*20/35	1.8	11.8	14.2	15.3 to 35.7 (217 to 507) 20.4 to 71.4 (290 to 1000)	143 (2000)	800	1800	55
VDC-2A-1A4-*20 VDC-2A-1A5-*20	VDC-2B-1A4-*20/35 VDC-2B-1A5-*20/35	1.0	11.0	14.2	51 to 107 (725 to 1500) 71.4 to 143 (1000 to 2000)	214 (3000)	800	1800	55
VDC-2A-2A2-*20 VDC-2A-2A3-*20	VDC-2B-2A2-*20/35 VDC-2B-2A3-*20/35	2.3	15.3	18.4	15.3 to 35.7 (217 to 507) 20.4 to 71.4 (290 to 1000)	143 (2000)	800	1800	55
VDC-3A-1A2-*20 VDC-3A-1A3-*20	8A-1A3-*20 VDC-3R-1A3-*20		26.4	31.7	15.3 to 35.7 (217 to 507) 20.4 to 71.4 (290 to 1000)	143 (2000)	800	1800	102
VDC-3A-1A4-*20 VDC-3A-1A5-*20	VDC-3B-1A4-*20 VDC-3B-1A5-*20			31.7	51 to 107 (725 to 1500) 71.4 to 143 (1000 to 2000)	214 (3000)	800	1300	103

Double Pump

Model No.		Vent Side	е		Shaft Sid	le	Revol	ution	
Foot Mounting Type	Discharge	Rate gpm	Pressure Adjustment Range	Discharge	Rate gpm	Pressure Adjustment Range	Speed min ⁻¹		Weight Ibs
(Flange Mounting)	1800min ⁻¹	1500min ⁻¹	kgf/cm (psi)	1800min ⁻¹	1500min ⁻¹	kgf/cm (psi)	Min.	Max.	155
VDC-11A(B)-2A3-2A*20/35	10.5	8.7	20.4 to 71.4	10.5	8.7	20.4 to 71.4 (290 to 1000)	800	1800	Type A 59
VDC-11A(B)-2A3-1A*20/35		0	(290 to 1000)	7.9	6.6	71.4 to 143 (1000 to 2000)		2000	Type B 44
VDC-12A(B)-2A3-2A*20/35	40.5	0.7	20.4 to 71.4	18.4	15.3	20.4 to 71.4 (290 to 1000)			
VDC-12A(B)-2A3-1A*20/35	10.5	8.7	(290 to 1000)	14.2	11.8	71.4 to 143 (1000 to 2000)	800	1800	Type A 92
VDC-12A(B)-1A5-2A*20/35	7.9	6.6	71.4 to 143	18.4	15.3	20.4 to 71.4 (290 to 1000) 71.4 to 143 (1000 to 2000)	000	1000	Type B 77
VDC-12A(B)-1A5-1A*20/35		0.0	(1000 to 2000)	14.2	11.8	71.4 (0 143 (1000 (0 2000)			
VDC-22A(B)-2A3-2A*20/35	18.4	15.3	20.4 to 71.4	18.4	15.3	20.4 to 71.4 (290 to 1000)	800	1800	Type A 136
VDC-22A(B)-2A3-1A*20/35			(290 to 1000)	17.2	11.8	71.4 to 143 (1000 to 2000)	000	1000	Type B 110
VDC-13A(B)-2A3-1A*20			20.4 to 71.4			20.4 to 71.4 (290 to 1000)			
VDC-13A(B)-2A3-1A*20	10.5	8.7	(290 to 1000)	31.7	26.4	71.4 to 143 (1000 to 2000)	800	1800	Type A 136
VDC-13A(B)-1A5-1A*20	7.9	6.6	71.4 to 143	31.7	20.4	20.4 to 71.4 (290 to 1000)	800	1800	Type B 105
VDC-13A(B)-1A5-1A*20	1 '.9	0.0	(1000 to 2000)			71.4 to 143 (1000 to 2000)			

Note: 1. VDC-3A, VDC-11A, VDC-12A and VDC-13A are foot mounting types, and come with foot mountings.

2. VDC-1A and VDC-2A are sub plate types. Sub plates are not included.


- Handling
- 1 Rotation Direction The direction of rotation is always is clockwise (rightward) when viewed from the shaft side.
- 2 Drain Drain piping must be direct piping up to a point that is below the tank fluid level, and piping should comply with the conditions shown in the table below to ensure that back pressure due to pipe resistance does not exceed 14 psi. When using a pump that has drain ports at two locations, use the drain port that is higher after the pump is installed. In the case of a double pump, run separate pipes from both the shaft side and the head side drains directly connect to the tank, so the drain pipe is below the surface of the oil.
- 3 Discharge Volume Adjustment

Model No.	VDC-1	VDC-2	VDC-3
Pipe Joint	At least	At least	At least
Size	1/4"	1/4"	3/8"
Pipe I.D.	At least	At least	At least
	.29	.29	.37
Pipe Length	1m or less	1m or less	1m or less

The discharge flow rate is decreased by clockwise (rightward) rotation of the discharge rate adjusting screw, and increased by counterclockwise (leftward) rotation.

Loosen the lock nut before making adjustments. After adjustment is complete, re-tighten the lock nut. The graph below provides general guidelines for the relationship between the rotation angle of the flow rate adjusting screw and the no-load discharge rate.

Q: Flow rate gpm =
$$\frac{\text{in}^3 \text{ x rpm}}{231}$$

Note:

The values indicated above are at maximum pump discharge volume with the flow volume adjusting screw at the 0° position.

The broken line shows the flow volume adjustment range lower limit value.

- 4 Pressure Adjustment Pressure is increased by clockwise (rightward) rotation of the discharge rate adjusting screw, and decreased by counterclockwise (leftward) rotation.

 Loosen the lock nut before making adjustments. After adjustment is complete, re-tighten the lock nut.
- 5 Factory Default P-Q Settings (Standard Model)
 - Flow Rate Setting = Maximum flow rate for model as indicated in the catalog
 - Pressure Setting = Pressure shown in table below
- 6 Thrust Screw and Stopper
 The thrust screw and stopper are
 precision adjusted at the factory during
 assembly. Never touch them.
 See callouts 15/43 and 15/38 in the
 VDC-1A and 2A/3A cross-section
 diagrams on pages B-33 and B-34.
- 7 An unload circuit is required when the motor is started under condition WYE Delta. Contact your agent about the unload circuit.
- Before operation
 Before operating the pump for the first time, put the pump discharge side into the noload state and then repeatedly start and stop the motor to bleed all air from inside the pump and the suction piping. After confirming that the pump is discharging oil, continue the no-load operation for at least 10 minutes to discharge all the air from the circuit. Provide an air bleed valve in circuits where it is difficult to bleed air before startup.
- 9 Sub Plate Use the table below for to specify a sub plate type when one is required.

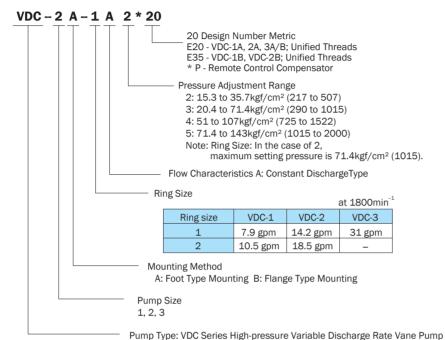
Factory Default Pressure Settings kgf/cm² (psi)
2: 35.7 (507)
3: 30.6 (435)
4: 5.1 (725)
5: 71.4 (1000)

- 10 Foot Mounting
- For a double pump with VDC-3 foot mounting, the foot mounting kit and pump are sold as a set. When only the mounting feet are required, pump mounting bolts, washers and other parts are sold together as the Foot Mounting Kit.
- See page B-36 for detailed dimensions.

 For the hydraulic operating fluid, use type ISO VG32 or equivalent (viscosity index of at least 90) for pressures of 1000 psi or lower, and type ISO VG68 or equivalent (viscosity index of at least 90) for pressures greater than 1000 psi.
- 12 The operating temperature range is 59 to 140°F. When the oil temperature at startup is 59°F or less, perform a warm-up operation at low pressure until the oil temperature reaches 59°F. Use the pump in an area where the temperature is within the range of 32 to 140°F.
- 13 Suction pressure is 4.35 psi, and the suction port flow rate should be no greater than 6 ft/sec.
- Avoid pulley, gear, and other drive systems that impart a radial or thrust load on the end of the pump shaft. Mount the pump so its pump shaft is oriented horizontally.
- 15 Provide a suction strainer with a filtering grade of about 100μm (150 mesh). For the return line to the tank, use a 10μm line filter.
- Manage hydraulic operating fluid so contamination is maintained at class NAS10 or lower. Take care to avoid contamination with water and other foreign matter, and watch out for discoloration. Whitish fluid indicates that water has contaminated the fluid, and brownish fluid indicates the fluid is dirty.
- 17 Contact your agent about using waterand glycol-based hydraulic operating fluids.
- 18 At startup, repeat the inching operation (start-stop) to bleed air from the pump and pipes.

(Continued on following page)

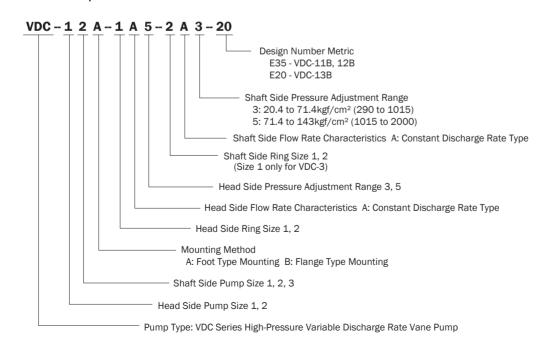
Sub Plate Number

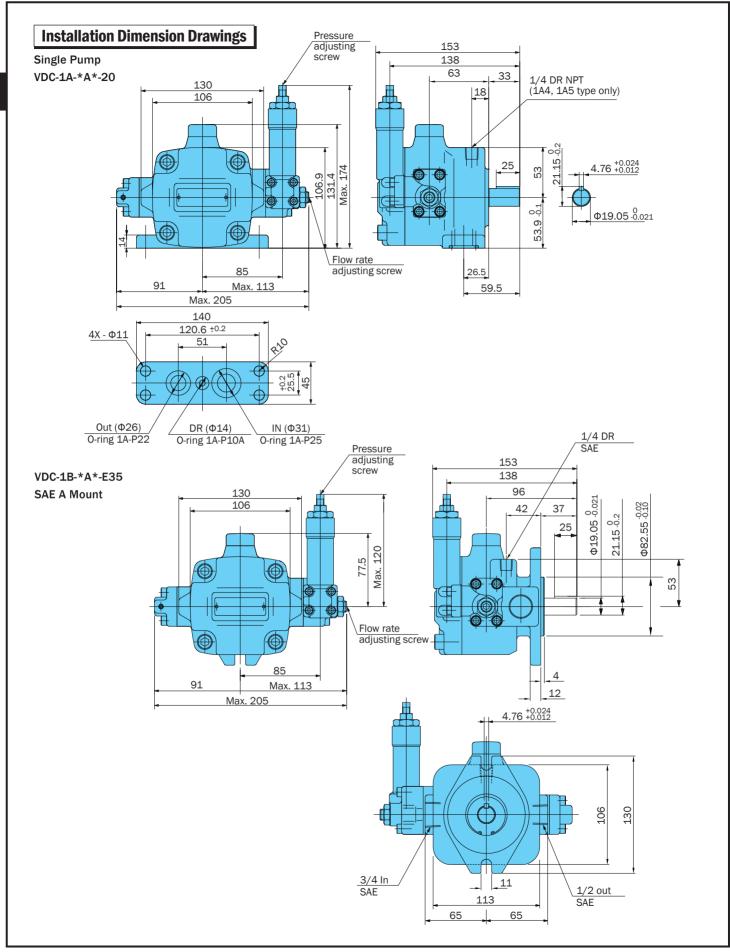

Pump Model No.	Sub Plate Number	Motor (hp)
VDC-1A-1A*-20	MVD-1-115-10	1-2
VDC-1A-1A20	MVD-1-135-10	3 - 5
VDC-1A-2A*-20	MVD-1-115Y-10	1 - 2
VDC-1A-2A "-20	MVD-1-135Y-10	3 - 5
VDC-2A-*A*-20	MVD-2-135-10	3-5
VD0-2A-"A"-20	MVD-2-160-10	7
VDC-2A-2A*-20	MVD-2-160Z-10	7

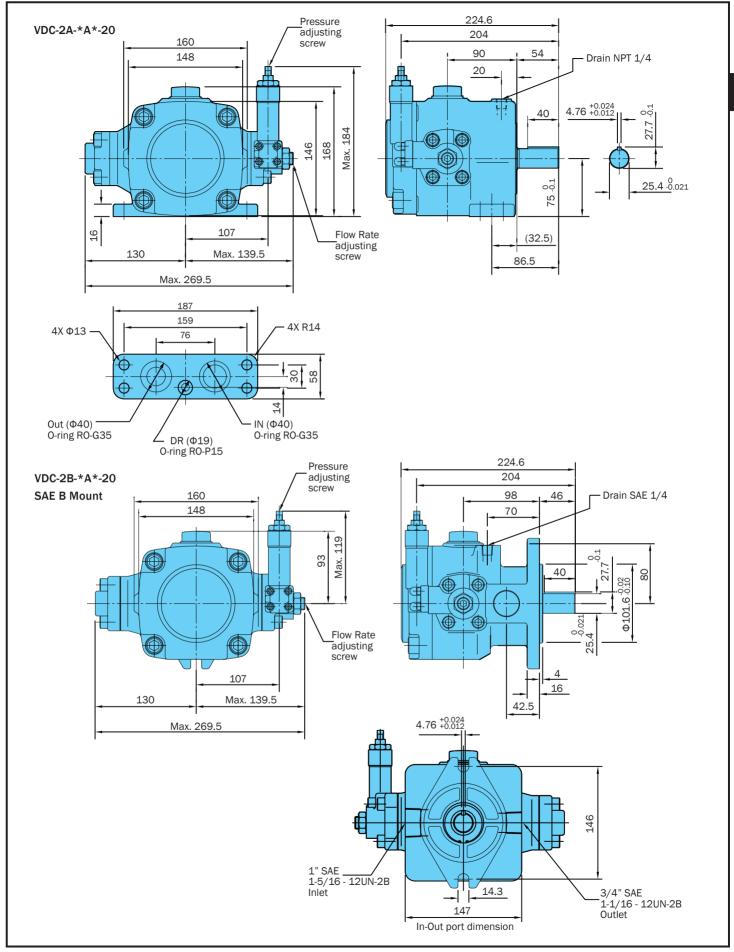
Note: See pages B-17 and B-18 for detailed dimensions.

- 19 Equip an air bleed valve in circuits where it is difficult to bleed air before startup. See page C-13 for more information.
- 20 To ensure proper lubrication of the pump's rubbing surfaces, supply oil to the interior of the pump before starting operation.
- 21 When centering the pump shaft, eccentricity with the motor shaft should be no greater than 0.001 in.
 Use a pump mounting base of sufficient rigidity. The angle error should be no greater than 1°.

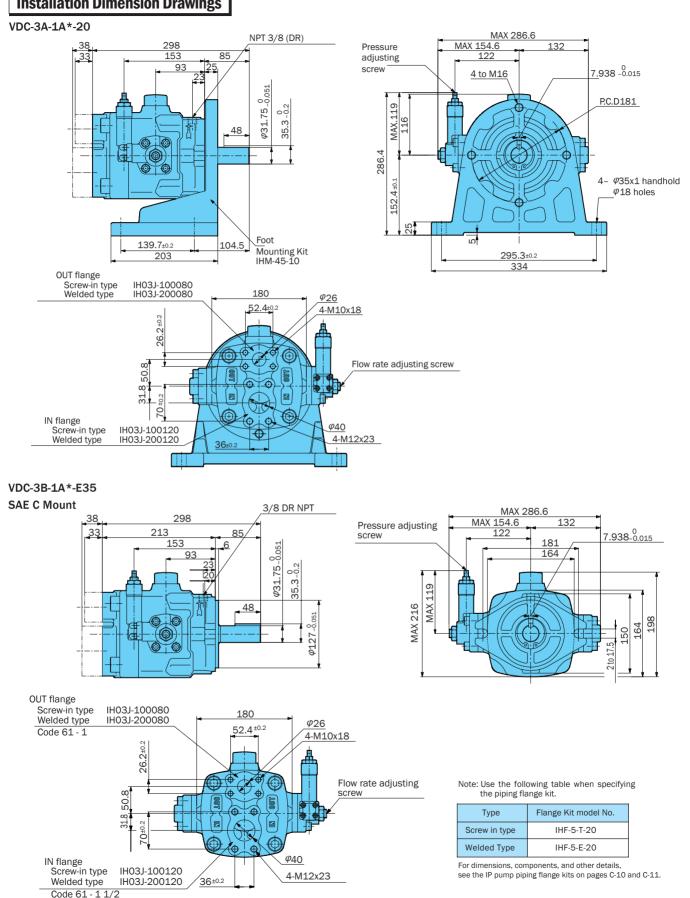
Understanding Model Numbers

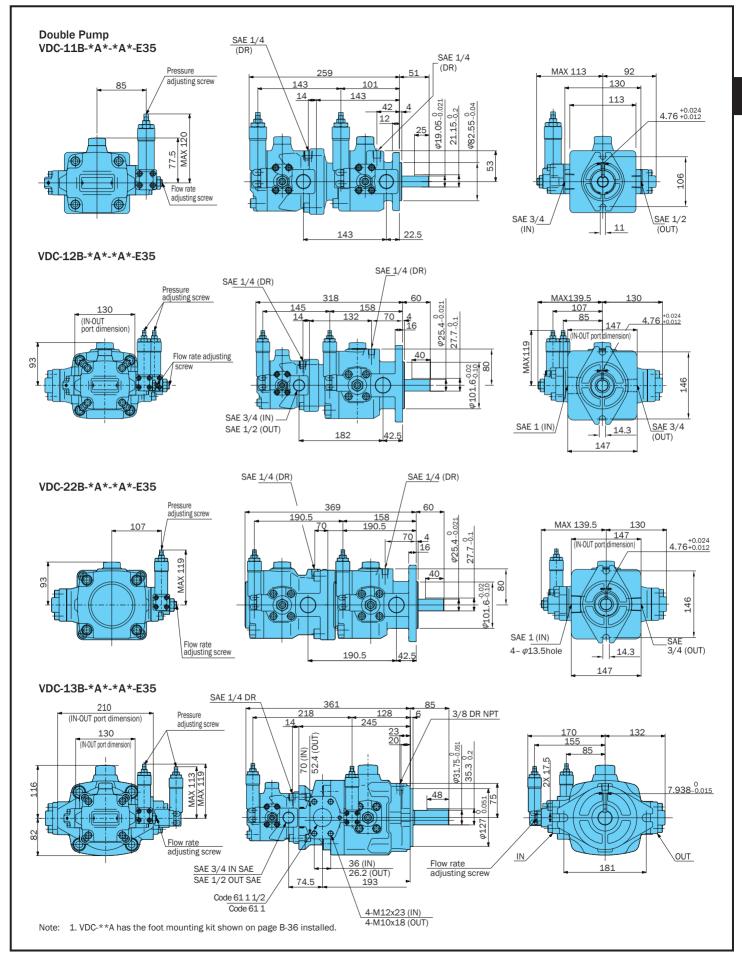

Single Pump

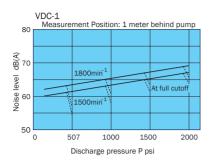


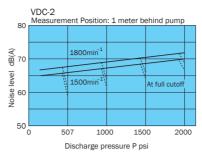

The ZR-T02-*-5895* is the recommended remote control valve. Provide piping to the remote

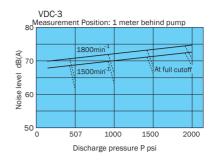
Double Pump


control valve at a pipe volume of 9 cu in or less.



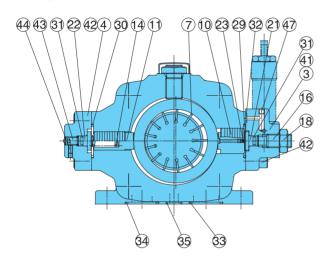

Installation Dimension Drawings

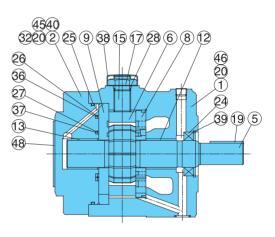




Performance Curves Typical characteristics at hydraulic operating fluid kinematic viscosity of 32 centistokes VDC-1A(B)-2A3-20/35 VDC-1A(B)-1A3-20/35 VDC-2A(B)-2A3-20/35 1800min⁻¹ Q 1800min⁻¹ Q 7.9 1800min⁻¹ 10.5 18.5 1500min 1500min⁻¹ 6.7 15.8 e rate Q gpm Discharge rate Q gpm ළි_{කු} 13.2 1.0 hb F.C 10.7 ≒ Lin 5.3 0.8 Discharge 2.6 5.3 5.4 2.6 1.3 1.3 2.7 2.6 DR l₀ 429 571 714 857 1000 571 714 857 1000 429 714 286 429 286 571 143 Discharge pressure P psi Discharge pressure P psi Discharge pressure P psi VDC-2A(B)-1A3-20/35 VDC-3A(B)-1A3-20/35 VDC-1A(B)-1A5-20/35 -1800min⁻¹ 20.1 1800min¹ 15.8 Q 1500min . 1500min 13.2 26.4 1500min¹ ate 0 gbm 7.5 ₩ 21.1 0 13.4 10.7 Discharge rate Q 5.3 Input Lin hp 9.4 은 rate 8.0 In the line of Lin 15.8 4.0 8.0 Lin 10.5 5.4 2.6 5.3 4 0 2.7 5.2 rate 1.3 2.7 1.3 DR 0 0 0 286 429 571 714 857 1000 429 571 714 2000 1000 1500 Discharge pressure P psi Discharge pressure P ps Discharge pressure P psi VDC-2A(B)-1A5-20/35 VDC-3A(B)-1A5-20/35 1800min-1 15.8 40.2 31.7 1800min⁻¹ Q 13.2 26.4 33.5 Discharge rate Q gpm 26.8 요 Tate 21.1 21.4 d 18.8 in 16.1 m 13.4 l Ŀ 20.1 a 10.7 10.5 13.4 8.0 2.6 5.2 6.7 2.7 DR : 1000 1500 2000 1000 1500 2000 Discharge pressure P psi Discharge pressure P psi Axial input at full cutoff VDC-1 VDC-2 VDC-3 2.6 5.3 6.7 hp linput at full cutoff h t at full cutoff h 5.3 7.0 7.0 7.0 7.0 5.3 Axial input at full cutoff 2.0 1.3 Axial input .67 Axial 507 1000 1500 2000 507 1000 1500 2000 0 507 1000 1500 2000 Discharge pressure P psi Discharge pressure P psi Discharge pressure P psi

Noise Characteristics





Cross-sectional Drawing

VDC-1A-*A*-20 VDC-2A-*A*-20

Seal Component Table (VDC-1*, VDC-2*)

Part	Applicable Pump Model No.	VDC-1A-*-20)	VDC-2A-*-2	0
No.	Seal Kit Number	VCBS-101A0	0	VCBS-102A0	0
140.	Part Name	Part Number	Q'ty	Part Number	Q'ty
24	Oil seal	TCV-224211	1	TCN-325211	1
25	0-ring	S85(NOK) 1		1A-G115	1
26	0-ring	AS568-034 1		AS568-150	1
27	0-ring	AS568-026	1	AS568-134	1
28	0-ring	1A-P14	1	1A-P18	1
29	0-ring	1A-P22	1	1A-G35	1
30	0-ring	1A-P20	1	1A-G35	1
31	0-ring	1A-P5	2	1A-P9	2
32	0-ring	1A-P6	4	1A-P7	4
33	0-ring	1A-P25	1	1A-G35	1
34	O-ring	1A-P22	1	1A-G35	1
35	O-ring	1A-P10A	1	1A-P15	1
36	Backup ring	VCB34-101000	1	VCB34-102000	1
37	Backup ring	VCB34-201000	1	VCB34-202000	1
57	O-ring	1A-P14	1	1A-P14	1
58	O-ring	1B-P6(Hs90)	3	1B-P6(Hs90)	3

Note:	1. Oil seals are	e manufactured b	y Nippon Oil Seal	Industry Co. Ltd. (NOK).
-------	------------------	------------------	-------------------	--------------------------

^{2.} O-ring 1A-** refers to JIS B2401-1A-**.

^{3.} For VDR-*B-*-20, the seal kit number becomes VDBS-10*B00, without the 33, 24, and 35 0-rings.

Part No.	Part Name	Part No.	Part Name	Part No.	Part Name
1	Body (1)	21	Holder	41	Screw
2	Body (2)	22	Holder	42	Screw
3	Cover (1)	23	Orifice	43	Screw (stopper)
4	Cover (2)	24	Oil seal	44	Screw
5	Shaft	25	O-ring	45	Plug
6	Ring	26	O-ring	46	Plug
7	Vane	27	O-ring	47	Pole
8	Plate (S)	28	O-ring	48	Nameplate
9	Plate (H)	29	O-ring	49	Valve body
10	Piston (1)	30	O-ring	50	Spool
11	Piston (2)	31	O-ring	51	Holder
12	Bearing	32	O-ring	52	Plunger
13	Bearing	33	O-ring	53	Spring
14	Spring	34	O-ring	54	Retainer
15	Thrust screw	35	O-ring	55	Screw
16	Screw	36	Backup ring	56	Nut
17	Nut	37	Backup ring	57	O-ring
18	Nut	38	Cap	58	O-ring
19	Key	39	Snap ring	59	Plug
20	Pin	40	Screw	60	Plug
	0	17.1		61	Screw

Cartridge Kits: VDC-1 | VCBC-101*A* VDC-2 | VCBC-102*A*

Includes Items: 5, 6, 7, 8, 9, 19, 20

Performance Curves

Seal Component Table (VDC-3*)

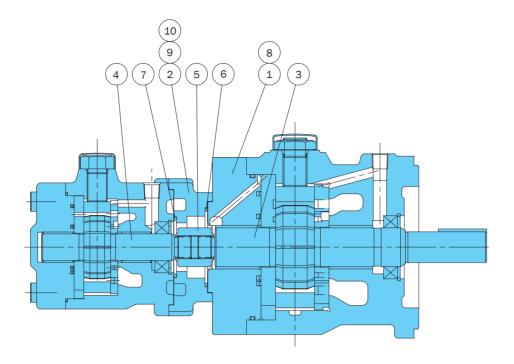
Part	Applicable Pump Model No.	VDC-3A(B)-*-2	20	
No.	Seal Kit Number	VCBS-103B0	0	
140.	Part Name	Part Number	Q'ty	
23	Oil seal	TCN-385811	1	
24	0-ring	1A-G130	1	
25	0-ring	AS568-154(Hs90)	1	
26	0-ring	AS568-151(Hs90)	1	
27	0-ring	1A-G40	2	
28	0-ring	1A-P22	1	
29	0-ring	1A-P9	2	
30	0-ring	1A-P7	2	
31	O-ring	1A-P7	2	
52	O-ring	1A-P14	1	
53	O-ring	1B-P6(Hs90)	3	

Note: 1. Oil seals are manufactured by Nippon Oil Seal Industry Co. Ltd. (NOK).

2. O-ring 1A-** refers to JIS B2401-1A-**.

	1		i		
Part No.	Part Name	Part No.	Part Name	Part No.	Part Name
1	Body (1)	20	Pin	39	Screw
2	Body (2)	21	Holder	40	Plug
3	Mounting	22	Orifice	41	Washer
4	Cover (1)	23	Oil seal	42	Nameplate
5	Cover (2)	24	O-ring	43	Pole
6	Shaft	25	0-ring	44	Valve body
7	Ring	26	0-ring	45	Spool
8	Vane	27	O-ring	46	Holder
9	Plate (S)	28	0-ring	47	Plunger
10	Plate (H)	29	0-ring	48	Spring
11	Piston (1)	30	0-ring	49	Retainer
12	Piston (2)	31	O-ring	50	Screw
13	Bearing	32	Сар	51	Nut
14	Spring	33	Snap ring	52	0-ring
15	Thrust screw	34	Screw	53	0-ring
16	Screw	35	Screw	54	Plug
17	Nut	36	Screw	55	Plug
18	Nut	37	Screw	56	Screw
19	Key	38	Screw (stopper)		I

Compensator Kits:


VDC-1 Thru -3 are same VDC-A2 ZR-G01-A2-1688C -A3 ZR-G01-A3-1688C -A4 ZR-G01-A4-1688C -A5 ZR-G01-A5-1688C P-Remote ZR-G01-P-E1235A

Cartridge Kits:

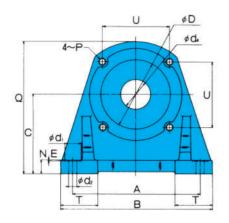
VDC-1-20/35 VDC-3-20/35 VCBC-1011A2 (A2,A3) VCBC-1031A2 (A2,A3) VCBC-1011A4 (A4,A5) VCBC-1031A4 (A4,A5) VCBC-1012A2 (2A2,2A3) VDC-2-20/35

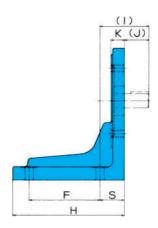
VCBC-1021A2 (A2,A3) VCBC-1021A4 (A4,A5) VCBC-1022A2 (2A2,2A3) Includes Items: 6, 7, 8, 9, 10, 19, 20

VDC Series Double Pump

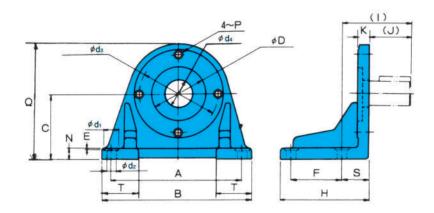
Part No.	Part Name
1	Body (2)
2	Body (3)
3	Shaft (S)
4	Shaft (H)
5	Joint
6	O-ring
7	O-ring
8	Screw
9	Screw
10	Screw

Note: In the case of a double pump, use single pump parts in addition to the 10 parts listed above.


List of Sealing Parts


Part	Part Name	VDC-11A	·-*-*-20	VDC-12A	\-*-*-20	VDC-22A	\-*-*-20	VDC-13A-*-*-20		
	No.	rarename	Part Number	Q'ty	Part Number	Q'ty	Part Number	Q'ty	Part Number	Q'ty
	6	0-ring			1A-G60	1	1A-G60	1		
	7	0-ring	1A-G85	1	1A-G45	1	1A-G60	1	1A-G85	1

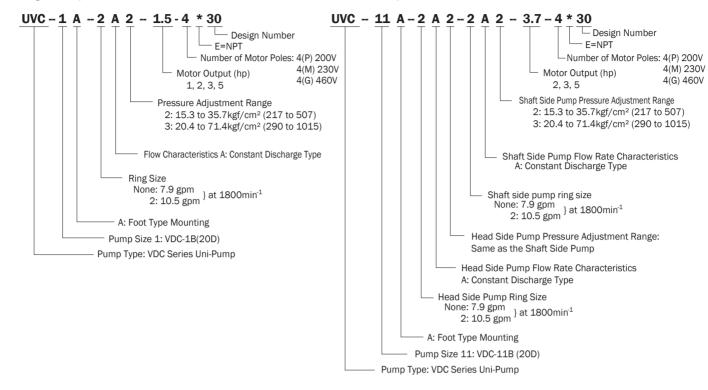
Note: 1. See the description of the single pump for seal parts that are not included in the list. 2. O-ring 1A-** refers to JIS B2401-1A-**.


Foot Mounting Installation Measurement Chart

For VDC-11A, VDC-12 and VDC-22 (for double pump)

For VDC-3A and VDC-13A

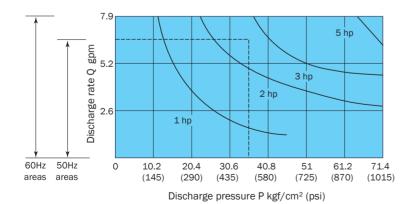
Foot Mounting	Applicable Pump		Access	sories		Dimensions (mm)							
Kit Model No.	Model No.	Bolt	Q'ty	Washer	Q'ty	А	В	С	Е	F	Н		
VCM-11-20	VDC-1 (20) VDC-11 (20)	TH-10 × 30	4	WS-B-10	4	171.45	204	107.95	1	95.25	150		
VCM-22-20	VDC-2 (20) VDC-12 (20) VDC-22 (20)	TH-12 × 35	4	WS-B-12	4	235	267	139.7	1	127	193		
IHM-45-10	VDC-3 (20) VDC-13 (20)	TB-16 × 40	2	WP-16	2	295.3	334	152.4	1	139.7	203		


Foot Mounting							Dimensio	ns (mm)							Weight
Kit Model No.	(1)	(J)	K	N	Р	Q	S	Т	U	φD	$\varphi d_{_1}$	$\varphi d_{_{2}}$	$\varphi d_{_3}$	$\varphi d_{_4}$	Ibs
VCM-11-20	66.5	33	18	18	M10	180	32.5	50	90	95.02	22	11		40	14.3
VCM-22-20	84.5	40	20	20	M12	232	44.5	57.5	124	135	22	14		40	26.4
IHM-45-10	104.5	60	25	25	M16	259	44.5	61		127	35	18	181	86	29.7

Uni-Pump Specifications

(CE mark standard compliant)

Single Pump


Double Pump

Specifications

Model No.	Maximum Working Pressure	Maximum Flow	Rate gpm (A*)	Maximum Flow Rate gpm(2A*)					
Woder No.	kgf/cm² (psi)	50Hz	60Hz	50Hz	60Hz				
UVC- 1A UVC-11A	71.4 (1015)	6.6	7.9	8.7	10.3				

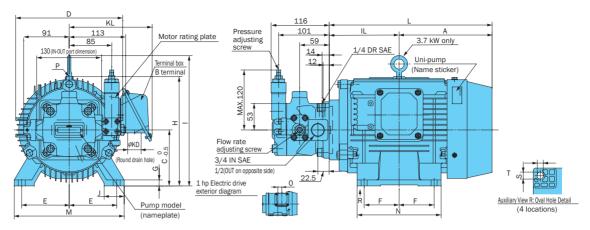
Motor selection curves

^{*} Select a uni-pump that has a pressure and flow rate that is within the range of the drive so that the drive will not overload.

· Selecting a motor

The area under a motor output curve in the graph to the left is the operating range for that motor under the rated output for that motor.

Example:

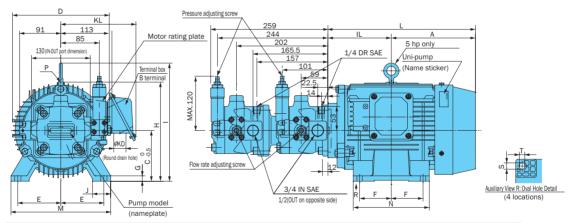

To find the motor that can produce pressure of 507 psi and a discharge rate of 6.6 gpm.

Selection Process:

Since the intersection of the two broken lines from a pressure of 507 psi and discharge rate of 6.6 gpm intersect in the area under the 3 hp curve, it means that a 3 hp motor should be used. In the case of a double pump configuration, select a motor that is larger than the total power required by both pumps.

Installation Dimension Drawings

UVC-1A



Uni-pump							М	otor Di	mensi	ons m	m							Frame	Output h p	Weight
	Α	IL	С	D	Е	F	G	Н	-1	J	L	М	N	S ×T	KD	KL	0	No.	(4 poles)	lbs
UVC-1A-A2-0.75-4-30	133	105	80	170	62.5	50	4.5	165	-	35	238	165	130	18 × 10	φ27	157	27.5	80M	1	53
UVC-1A-A2-1.5-4-30																				
UVC-1A-A3-1.5-4-30	143	118.5	90	198	70	62.5	10	190	-	40	261.5	176	150	12 × 10	φ27	159	-	90L	2	56
UVC-1A-2A2-1.5-4-30																				
UVC-1A-A2-2.2-4-30																				
UVC-1A-A3-2.2-4-30	157.5	5 133	133	3 100	198	80	70	12	200	-	40	290.5 200	0 168	14 × 12	φ27	159	-	100L	3	67
UVC-1A-2A2-2.2-4-30										10	250.5	200								
UVC-1A-A3-3.7-4-30																				
UVC-1A-A4-3.7-4-30	400	140	112	214	95	70	12	_	261	40	.		14 × 12	σ27	100	_	11011	5	00	
UVC-1A-2A2-3.7-4-30	186	140	112	214	95	10	12	_	201	40	326	220	168	14 " 12	ΨΖΙ	166	_	112M	٥	80
UVC-1A-2A3-3.7-4-30																				

- 0.75 to 2.2kW model does not have hangers.

- 1. Standard drive motor is the fully enclosed fan-cooled B type.
 2. Standard voltage for drive motor is 200 VAC, 50/60 Hz or 220 VAC, 60 Hz.
 3. Standard terminal box is B terminal (right side viewed from pump).
 4. See page A-21 for the characteristics of the drive motor for the unipump (domestic standard 3 rating).

UVC-11A

Uni-pump							Motor	Dime	nsions	mm							Frame	Output h p	Weight								
	Α	IL	С	D	Е	F	G	Н	-1	J	L	М	N	S ×T	KD	KL	No. (4 poles)	(4 poles)	lbs								
UVC-11A-A2-A2-1.5-4-30																											
UVC-11A-A2-A3-1.5-4-30	143	118.5	90	198	70	62.5	10	190	-	40	261.5	176	150	12 × 10	φ27	159	90L	2	79								
UVC-11A-A3-A3-1.5-4-30	1																										
UVC-11A-A2-A2-2.2-4-30																											
UVC-11A-A2-A3-2.2-4-30	157.5	133	100	198	80	70	12	200	_	40	290.5	200	168 14×1	1/1×10	φ27	159	100L	3	90								
UVC-11A-A3-A3-2.2-4-30	137.3	133	100	130			12	200		40	250.5	200		1412 ψ21	ΨΖΙ				30								
UVC-11A-2A2-2A2-2.2-4-30																											
UVC-11A-A2-A2-3.7-4-30																											
UVC-11A-A2-A3-3.7-4-30																											
UVC-11A-A3-A3-3.7-4-30	186	140	112	214	95	70	12	-	261	40 326	220	168	14 × 12	φ27	166	112M	5	103									
UVC-11A-2A2-2A2-3.7-4-30]										323 220																
UVC-11A-2A2-2A3-3.7-4-30	1																										

No hanger on 2 and 3 hp models.

- Standard drive motor is the fully enclosed fan-cooled B type.
 Standard voltage for drive motor is 200 VAC, 50/60 Hz or 220 VAC, 60 Hz.
 Standard terminal box is B terminal (right side viewed from pump).
 See page A-21 for the characteristics of the drive motor for the unipump (domestic standard 3 rating).

UVN Series Variable Volume Vane Uni-Pump NSP Uni-Pump

7.9 to 31.7 gpm 2000 psi

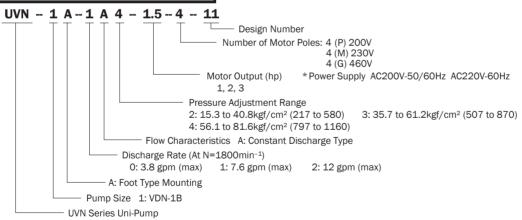
Features

Energy efficient high performance All the performance of a vane pump, right from the low pressure range, is enhanced even further by eliminating the external drain and optimizing the pressure balance, creating a design that generates little heat. The result is a pump that contributes to the energy efficiency of the mother machine, as well as to process precision

Lightweight, compact design

The pump and motor are designed for exclusive uni-pump use, making them lightweight, compact, easy to handle, and suitable for a wide range of applications.

Low noise, long life

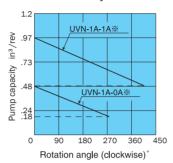

The pump and motor shaft are linked by a joint, which minimizes noise by eliminating the effects of shaft vibration and an off-center shaft. The coupling is constructed to allow constant lubrication, for friction-free long life.

Specifications

Model No.	Pump Capacity	Pressure Adjustment Range	No-load Discha	arge Rate gpm	
Wiodel No.	in ³ /rev	kgf/cm² (psi)	50Hz	60Hz	
UVN-1A-0A2- 0.7 1.5		15.3 to 40.8 (217 to 580)			
UVN-1A-0A3- 0.7 1.5	.49	35.7 to 61.2 (507 to 870)	3.1	3.8	
UVN-1A-0A4- 0.7 1.5		56.1 to 81.6 (797 to 1160)			
UVN-1A-1A2- 1.5-4-11 2.2		15.3 to 40.8 (217 to 580)			
UVN-1A-1A3- 1.5 2.2-4-11	.98	35.7 to 61.2 (507 to 870)	6.3	7.6	
UVN-1A-1A4- ^{1.5} -4-11 _{2.2}		56.1 to 81.6 (797 to 1160)			
UVN-1A-2A3- ^{2.2} -4-11	1.59	(507 to 870)	10	3.7 - 12	
UVN-1A-2A4- ^{2.2} -4-11	1.59	(797 to 1160)	10	5.7 - 12	

Note: Contact your agent for combinations other than those noted above.

Understanding Model Numbers



- Handling
- 1. Installation and Piping Precautions 1 Provide a mounting base of sufficient
- rigidity, and install so that the pump shaft is oriented horizontally.
- 2 Make sure the flow rate of the suction piping is no more than 6 ft/s, and that the suction pressure at the pump suction port is in the range of 4.35 psi.
- 3 Drain piping must be direct piping up to a point that is below the tank fluid level, and back pressure due to pipe resistance should not exceed 14 psi.
- Provide a suction strainer with a filtering grade of about 100 µm (150 mesh).
- 2. Running Precautions
- 1 The direction of rotation is clockwise (rightward) when viewed from the motor fan side.
- 2 At startup, repeat the inching operation (start-stop) with the pump discharge side at no-load to bleed air from the pump and suction piping.
- 3 Equip an air bleed valve in circuits where it is difficult to bleed air before

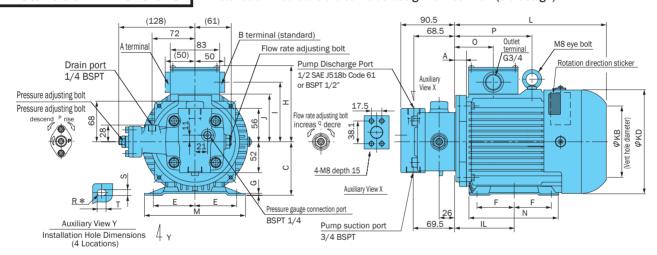
- startup.
- 4 Make sure the maximum peak pressure (setting pressure + surge pressure) during operation does not exceed 2000
- Refer to the following piping conditions as a guideline to keep the maximum peak pressure below 2000 psi. 1/2" x 2 m rubber hose (for 2000 psi) (pipe volume: approximately 15 in³)
- 5 Install a relief valve to cut surges in the circuit if pressure exceeds 2000 psi.

- 3. Management of Hydraulic Operating Fluid
- 1 Use only good-quality hydraulic operating fluid with a kinematic viscosity at a fluid temperature of 104°F within the range of (30 to 50cSt).
- 2 Normally, you should use an R&O type and wear-resistant type of ISO VG32 or 46, or equivalent.
- The operating temperature range is 59 to 140°F. When the oil temperature at startup is 59°F or less, perform a warm-up operation at low pressure until the oil temperature reaches 59°F. Use the pump in an area where the temperature is within the range of 50 to 104°F.
- 3 For the return line to the tank, use a 10 μ m line filter.
- 4 Manage hydraulic operating fluid so contamination is maintained at class NAS10 or lower. Take care to avoid contamination with water, foreign matter, and other oil, and watch out for discoloration.

- 4. Setting the Pressure and Discharge Rate
- 1 When adjusting pressure, pressure is increased by clockwise (rightward) rotation of the adjusting screw and decreased by counterclockwise (leftward) rotation. After adjustment is complete, securely tighten the lock nut.
- 2 Turn adjustment screw right to decrease or left to increase volume of discharge. Refer to guidelines in the following diagram for the relationship of the non-load volume of discharge and the position of the flow adjustment screw.

- After adjustment is complete, securely tighten the lock nut.
- 3 Factory Default P-Q Settings (Standard Model)
- Flow Rate Setting = Maximum flow rate for model as indicated in the catalog
- Pressure Setting = Pressure shown in table below

Factory Default Pressure Settings kgf/cm² (psi)
2: 35.7 (507)
3: 51.0 (725)
4: 71.4 (1015)


4 All adjustments, except the flow volume adjusting screw, are precision adjusted at the factory during assembly, do not adjust them. (Do not make any adjustments other than the pressure adjustment screw and the flow rate adjusting screw.)

Note:

The values indicated above are at maximum pump discharge volume with the flow volume adjusting screw at the 0° position. The broken lines show the flow volume adjustment range lower limit value.

Installation Dimensions

Installation method is the same as design number 10D (old design).

Model No.	Output - Poles	98													Weight					
Model No.	(hp - 4P)	Α	IL	С	φKD	Е	F	G	Н	J	L	М	N	T×S	R*	φΚΒ	0	Р	-1	lbs
UVN-1A-*A*-0.7*-4-11	1 - 4	20	90	80	157	62.5	50	2.3	120	72	230	155	120	15 × 10	R5	110	65	130	92	37
UVN-1A-*A*-1.5*-4-11	2 - 4	20	100	90	175	70	62.5	3.2	128	80	255	170	150	15 × 10	R5	120	65	130	100	46
UVN-1A-*A*-2.2*-4-11	3 - 4	20	110	100	195	80	70	3.2	138	90	285	200	165	17 × 12	R6	134	65	135	110	57

No hanger.

- 1. Standard drive motor is the fully enclosed fan-cooled E type.
- 2. Standard voltage for drive motor is 200 VAC, 50/60 Hz or 220 VAC, 60 Hz.
- 3. Standard terminal box is B terminal (right side viewed from pump).

Characteristics of drive motor for Uni-Pump (domestic standard 3 rating)

Output hp	Poles	(Note1): Model Number	Voltage [V]	Frequency [Hz]	Current rating [A]	RPM rating [min -1]	Heat resistance
			230 200 460	50	3.9	1400	
1	4		230 200 460	60	3.6	1690	E
		The drive motor is spe-	230 220 460	60	3.5	1710	
		cialized for the	230 200 460	50	7.1	1390	
2	4	unipump and is not a	230 200 460	60	6.6	1670	E
			230 220 460	60	6.3	1700	
		specific model.	230 200 460	50	9.0	1410	
3	4		230 200 460	60	8.7	1700	E
			230 220 460	60	8.2	1720	

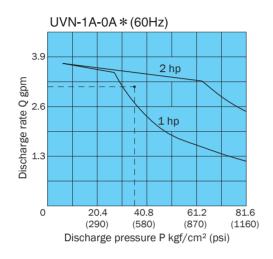
Performance Curves

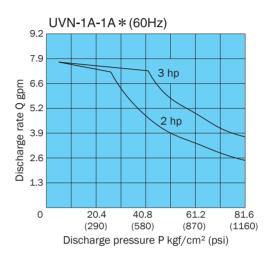
UVN-1A-*A*-*-4-11 Operating Fluid : ISO VG 32 Oil temperature : 104°F

Motor selection curves

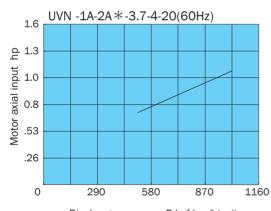
The area under a motor output curve in the graph below is the operating range for that motor under the rated output for that motor.

Example:

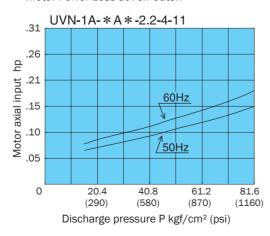

To find the motor that can produce pressure of 507 psi and a discharge rate of 3.1 gpm.

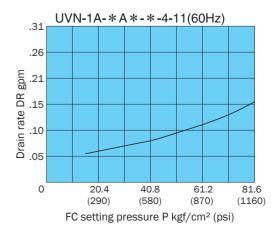

Selection Process

Since the intersection of the two broken lines from a pressure of 507 psi and discharge rate of 3.1 gpm intersect in


the area under the 2 hp curve, it means that a 2 hp motor should be used.

* Select a uni-pump that has a pressure and flow rate that is within the range of the drive so that the drive will not overload.


DR Volume at Full Cutoff


Discharge pressure P kgf/cm² (psi)

FC setting pressure P kgf/cm² (psi)

Motor Power Loss at Full Cutoff

DR Volume at Full Cutoff

